Modularity, Atomicity and States in Archimedean Lattice Effect Algebras
Symmetry, integrability and geometry: methods and applications, Tome 6 (2010) Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Effect algebras are a generalization of many structures which arise in quantum physics and in mathematical economics. We show that, in every modular Archimedean atomic lattice effect algebra $E$ that is not an orthomodular lattice there exists an $(o)$-continuous state $\omega$ on $E$, which is subadditive. Moreover, we show properties of finite and compact elements of such lattice effect algebras.
Keywords: effect algebra; state; modular lattice; finite element; compact element.
@article{SIGMA_2010_6_a2,
     author = {Jan Paseka},
     title = {Modularity, {Atomicity} and {States} in {Archimedean} {Lattice} {Effect} {Algebras}},
     journal = {Symmetry, integrability and geometry: methods and applications},
     year = {2010},
     volume = {6},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SIGMA_2010_6_a2/}
}
TY  - JOUR
AU  - Jan Paseka
TI  - Modularity, Atomicity and States in Archimedean Lattice Effect Algebras
JO  - Symmetry, integrability and geometry: methods and applications
PY  - 2010
VL  - 6
UR  - http://geodesic.mathdoc.fr/item/SIGMA_2010_6_a2/
LA  - en
ID  - SIGMA_2010_6_a2
ER  - 
%0 Journal Article
%A Jan Paseka
%T Modularity, Atomicity and States in Archimedean Lattice Effect Algebras
%J Symmetry, integrability and geometry: methods and applications
%D 2010
%V 6
%U http://geodesic.mathdoc.fr/item/SIGMA_2010_6_a2/
%G en
%F SIGMA_2010_6_a2
Jan Paseka. Modularity, Atomicity and States in Archimedean Lattice Effect Algebras. Symmetry, integrability and geometry: methods and applications, Tome 6 (2010). http://geodesic.mathdoc.fr/item/SIGMA_2010_6_a2/

[1] Avallone A., Barbieri G., Vitolo P., Weber H., “Decomposition of effect algebras and the Hammer–Sobczyk theorem”, Algebra Universalis, 60 (2009), 1–18 | DOI | MR | Zbl

[2] Busch P., Grabowski M., Lahti P. J., Operational quantum physics, Lecture Notes in Physics. New Series m: Monographs, 31, Springer-Verlag, New York, 1995 | MR

[3] Chajda I., Halaš R., Kühr J., “Many-valued quantum algebras”, Algebra Universalis, 60 (2009), 63–90 | DOI | MR | Zbl

[4] Chang C. C., “Algebraic analysis of many valued logics”, Trans. Amer. Math. Soc., 88 (1958), 467–490 | DOI | MR | Zbl

[5] Chovanec F., Kôpka F., “Difference posets in the quantum structures background”, Internat. J. Theoret. Phys., 39 (2000), 571–583 | DOI | MR | Zbl

[6] Davey B. A., Priestley H. A., Introduction to lattices and order, 2nd ed., Cambridge University Press, New York, 2002 | MR | Zbl

[7] Dvurečenskij A., Pulmannová S., New trends in quantum structures, Mathematics and its Applications, 516, Kluwer Academic Publishers, Ister Science, Dordrecht–Bratislava, 2000 | MR | Zbl

[8] Dvurečenskij A., Graziano M. G.,, “An invitation to economical test spaces and effect algebras”, Soft Comput., 9 (2005), 463–470 | DOI | Zbl

[9] Epstein L. G., Zhang J., “Subjective probabilities on subjectively unambiguous events”, Econometrica, 69 (2001), 265–306 | DOI | MR | Zbl

[10] Foulis D. J., Bennett M. K., “Effect algebras and unsharp quantum logics”, Found. Phys., 24 (1994), 1331–1352 | DOI | MR

[11] Foulis D. J., “Effects, observables, states, and symmetries in physics”, Found. Phys., 37 (2007), 1421–1446 | DOI | MR | Zbl

[12] Greechie R. J., Foulis D. J., Pulmannová S., “The center of an effect algebra”, Order, 12 (1995), 91–106 | DOI | MR | Zbl

[13] Gudder S. P., “Sharply dominating effect algebras”, Tatra Mt. Math. Publ., 15 (1998), 23–30 | MR | Zbl

[14] Gudder S. P., “$S$-dominating effect algebras”, Internat. J. Theoret. Phys., 37 (1998), 915–923 | DOI | MR | Zbl

[15] Jacobson N., Lectures in abstract algebra. Vol. I. Basic concepts, D. Van Nostrand Co., Inc., Toronto – New York – London, 1951 | MR

[16] Jenča G., Riečanová Z., “On sharp elements in lattice ordered effect algebras”, BUSEFAL, 80 (1999), 24–29

[17] Kalmbach G., Orthomodular lattices, Mathematics and its Applications, 453, Kluwer Academic Publishers, Dordrecht, 1998 | MR | Zbl

[18] Kôpka F., “$D$-posets of fuzzy sets”, Tatra Mt. Math. Publ., 1 (1992), 83–87 | MR

[19] Kôpka F., Chovanec F., “$D$-posets”, Math. Slovaca, 44 (1994), 21–34 | MR

[20] Kôpka F., “Compatibility in $D$-posets”, Internat. J. Theoret. Phys., 34 (1995), 1525–1531 | DOI | MR

[21] Paseka J., Riečanová Z., “Compactly generated de Morgan lattices, basic algebras and effect algebras”, Internat. J. Theoret. Phys. (to appear)

[22] Paseka J., Riečanová Z., Wu J., Almost orthogonality and Hausdorff interval topologies of atomic lattice effect algebras, arXiv:0908.3288

[23] Paseka J., Riečanová Z., “The inheritance of BDE-property in sharply dominating lattice effect algebras and $(o)$-continuous states”, Soft Comput. (to appear)

[24] Riečanová Z., “Compatibility and central elements in effect algebras”, Tatra Mt. Math. Publ., 16 (1999), 151–158 | MR | Zbl

[25] Riečanová Z., “Subalgebras, intervals and central elements of generalized effect algebras”, Internat. J. Theoret. Phys., 38 (1999), 3209–3220 | DOI | MR | Zbl

[26] Riečanová Z., “Generalization of blocks for $D$-lattices and lattice-ordered effect algebras”, Internat. J. Theoret. Phys., 39 (2000), 231–237 | DOI | MR | Zbl

[27] Riečanová Z., “Orthogonal sets in effect algebras”, Demonstratio Math., 34 (2001), 525–532 | MR | Zbl

[28] Riečanová Z., “Proper effect algebras admitting no states”, Internat. J. Theoret. Phys., 40 (2001), 1683–1691 | DOI | MR | Zbl

[29] Riečanová Z., “Lattice effect algebras with $(o)$-continuous faithful valuations”, Fuzzy Sets and Systems, 124:3 (2001), 321–327 | DOI | MR | Zbl

[30] Riečanová Z., “Smearings of states defined on sharp elements onto effect algebras”, Internat. J. Theoret. Phys., 41 (2002), 1511–1524 | DOI | MR | Zbl

[31] Riečanová Z., “Continuous lattice effect algebras admitting order-continuous states”, Fuzzy Sets and Systems, 136 (2003), 41–54 | DOI | MR | Zbl

[32] Riečanová Z., “Modular atomic effect algebras and the existence of subadditive states”, Kybernetika, 40 (2004), 459–468 | MR

[33] Riečanová Z., Paseka J., “State smearing theorems and the existence of states on some atomic lattice effect algebras”, J. Logic Comput. (to appear)

[34] Riečanová Z., Wu J., “States on sharply dominating effect algebras”, Sci. China Ser. A, 51 (2008), 907–914 | DOI | MR | Zbl

[35] 1st ed., Hindustan, Adam Hilger, Delhi–Bristol, 1977 | MR

[36] Sykes S. R., “Finite modular effect algebras”, Adv. in Appl. Math., 19 (1997), 240–250 | DOI | MR | Zbl