@article{SIGMA_2010_6_a19,
author = {Ajit Bhand},
title = {Geodesic {Reduction} via {Frame} {Bundle} {Geometry}},
journal = {Symmetry, integrability and geometry: methods and applications},
year = {2010},
volume = {6},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SIGMA_2010_6_a19/}
}
Ajit Bhand. Geodesic Reduction via Frame Bundle Geometry. Symmetry, integrability and geometry: methods and applications, Tome 6 (2010). http://geodesic.mathdoc.fr/item/SIGMA_2010_6_a19/
[1] Abraham R., Marsden J. E., Foundations of mechanics, 2nd ed., Benjamin/Cummings Publishing Co., Inc., Advanced Book Program, Reading, Mass., 1978 | MR | Zbl
[2] Bates L., “Problems and progress in nonholonomic reduction”, Rep. Math. Phys., 49 (2002), 143–149 | DOI | MR | Zbl
[3] Bhand A., Geodesic reduction via frame bundle geometry, PhD Thesis, Queen's University, Kingston, ON, Canada, 2007; available at https://qspace.library.queensu.ca/handle/1974/456
[4] Bloch A. M., Krishnaprasad P. S., Marsden J. E., Murray R. M., “Nonholonomic mechanical systems with symmetry”, Arch. Rational Mech. Anal., 136 (1996), 21–99 | DOI | MR | Zbl
[5] Bullo F., Lewis A. D., Geometric control of mechanical systems. Modeling, analysis, and design for simple mechanical control systems, Texts in Applied Mathematics, 49, Springer-Verlag, New York, 2005 | MR | Zbl
[6] Bullo F., Lewis A. D.,, “Reduction, linearization, and stability of relative equilibria for mechanical systems on Riemannian manifolds”, Acta Appl. Math., 99 (2007), 53–95 | DOI | MR | Zbl
[7] Cantrijn F., de León M., Marrero J. C., Martín de Diego D., “Reduction of nonholonomic mechanical systems with symmetries”, Rep. Math. Phys., 42 (1998), 25–45 | DOI | MR | Zbl
[8] Cantrijn F., Langerock B., “Generalised connections over a vector bundle map”, Differential Geom. Appl., 18 (2003), 295–317 ; math.DG/0201274 | DOI | MR | Zbl
[9] Cendra H., Marsden J. E., Ratiu T. S., “Geometric mechanics, Lagrangian reduction, and nonholonomic systems”, Mathematics Unlimited–2001 and Beyond, Springer, Berlin, 2001, 221–273 | MR | Zbl
[10] Cendra H., Marsden J. E., Ratiu T. S., Lagrangian reduction by stages, Mem. Amer. Math. Soc., 152, no. 722, 2001, 108 pp., ages | MR
[11] Cortés J., Martínez E., “Mechanical control systems on Lie algebroids”, IMA J. Math. Control Inform., 21 (2004), 457–492 | DOI | MR | Zbl
[12] Cortés Monforte J., Geometric, control and numerical aspects of nonholonomic systems, Lecture Notes in Mathematics, 1793, Springer-Verlag, Berlin, 2002 | MR | Zbl
[13] Crampin M., Mestdag T., “Reduction and reconstruction aspects of second-order dynamical systems with symmetry”, Acta Appl. Math., 105 (2009), 241–266 ; arXiv:0807.0156 | DOI | MR | Zbl
[14] Ehlers K., Koiller J., Montgomery R., Rios P. M., “Nonholonomic systems via moving frames: Cartan equivalence and Chaplygin Hamiltonization”, The Breadth of Symplectic and Poisson Geometry, Progr. Math., 232, Birkhäuser Boston, Boston, MA, 2005, 75–120 ; math-ph/0408005 | MR | Zbl
[15] Kobayashi S., Nomizu K., Foundations of differential geometry, Tracts in Pure and Applied Mathematics, 1, Interscience Publishers, New York – London, 1964
[16] Koiller J., “Reduction of some classical nonholonomic systems with symmetry”, Arch. Rational Mech. Anal., 118 (1992), 113–148 | DOI | MR | Zbl
[17] Lewis A. D., “Affine connections and distributions with applications to nonholonomic mechanics”, Rep. Math. Phys., 42 (1998), 135–164 | DOI | MR | Zbl
[18] Lewis A. D., Murray R. M., “Decompositions for control systems on manifolds with an affine connection”, Systems Control Lett., 31 (1997), 199–205 | DOI | MR | Zbl
[19] Marsden J. E., Ratiu T. S., Introduction to mechanics and symmetry. A basic exposition of classical mechanical systems, 2nd ed., Texts in Applied Mathematics, 17, Springer-Verlag, New York, 1999 | MR | Zbl
[20] Marsden J. E., Weinstein A., “Reduction of symplectic manifolds with symmetry”, Rep. Math. Phys., 5 (1974), 121–130 | DOI | MR | Zbl
[21] Smale S., “Topology and mechanics”, Invent. Math., 10 (1970), 305–331 | DOI | MR | Zbl
[22] Śniatycki J., “Nonholonomic Noether theorem and reduction of symmetries”, Rep. Math. Phys., 42 (1998), 5–23 | DOI | MR | Zbl