@article{SIGMA_2010_6_a18,
author = {Allen Stern},
title = {Emergent {Abelian} {Gauge} {Fields} from {Noncommutative} {Gravity}},
journal = {Symmetry, integrability and geometry: methods and applications},
year = {2010},
volume = {6},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SIGMA_2010_6_a18/}
}
Allen Stern. Emergent Abelian Gauge Fields from Noncommutative Gravity. Symmetry, integrability and geometry: methods and applications, Tome 6 (2010). http://geodesic.mathdoc.fr/item/SIGMA_2010_6_a18/
[1] Doplicher S., Fredenhagen K., Roberts J. E., “Spacetime quantization induced by classical gravity”, Phys. Lett. B, 331 (1994), 39–44 | DOI | MR
[2] Stern A., “Noncommutative point sources”, Phys. Rev. Lett., 100 (2008), 061601, 4 pp., ages ; arXiv:0709.3831 | DOI | MR
[3] Stern A., “Particlelike solutions to classical noncommutative gauge theory”, Phys. Rev. D, 78 (2008), 065006, 11 pp., ages ; arXiv:0804.3121 | DOI | MR
[4] Pinzul A., Stern A., “Noncommutative AdS$^3$ with quantized cosmological constant”, Classical Quantum Gravity, 23 (2006), 1009–1021 ; hep-th/0511071 | DOI | MR | Zbl
[5] Chaichian M., Tureanu A., Zet G., “Corrections to Schwarzschild solution in noncommutative gauge theory of gravity”, Phys. Lett. B, 660 (2008), 573–578 ; ; Chaichian M., Setare M. R., Tureanu A., Zet G., “On black holes and cosmological constant in noncommutative gauge theory of gravity”, J. High Energy Phys., 2008:4 (2008), 064, 18 pp., ages ; arXiv:0710.2075arXiv:0711.4546 | DOI | MR | DOI | MR
[6] Fabi S., Harms B., Stern A., “Noncommutative corrections to the Robertson–Walker metric”, Phys. Rev. D, 78 (2008), 065037, 7 pp., ages ; arXiv:0808.0943 | DOI | MR
[7] Calmet X., Kobakhidze A., “Second order noncommutative corrections to gravity”, Phys. Rev. D, 74 (2006), 047702, 3 pp., ages ; hep-th/0605275 | DOI
[8] Banerjee R., Mukherjee P., Samanta S., “Lie algebraic noncommutative gravity”, Phys. Rev. D, 75 (2007), 125020, 7 pp., ages ; hep-th/0703128 | DOI | MR
[9] Seiberg N., Witten E., “String theory and noncommutative geometry”, J. High Energy Phys., 1999:9 (1999), 032, 93 pp., ages ; hep-th/9908142 | DOI | MR | Zbl
[10] Chamseddine A. H., “Deforming Einstein's gravity”, Phys. Lett. B, 504 (2001), 33–37 ; hep-th/0009153 | DOI | MR | Zbl
[11] Chamseddine A. H., “$\mathrm{SL}(2,C)$ gravity with a complex vierbein and its noncommutative extension”, Phys. Rev. D, 69 (2004), 024015, 8 pp., ages ; hep-th/0309166 | DOI | MR
[12] Stern A., “Particle classification and dynamics in $\mathrm{GL}(2,C)$ gravity”, Phys. Rev. D, 79 (2009), 105017, 16 pp., ages ; arXiv:0903.0882 | DOI | MR
[13] Aschieri P., Blohmann C., Dimitrijevic M., Meyer F., Schupp P., Wess J., “A gravity theory on noncommutative spaces”, Classical Quantum Gravity, 22 (2005), 3511–3532 ; hep-th/0504183 | DOI | MR | Zbl
[14] Schupp P., Solodukhin S., Exact black hole solutions in noncommutative gravity, arXiv:0906.2724
[15] Ohl T., Schenkel A., “Cosmological and black hole spacetimes in twisted noncommutative gravity”, J. High Energy Phys., 2009:10 (2009), 052, 12 pp., ages ; arXiv:0906.2730 | DOI | MR
[16] Dolan B. P., Gupta K. S., Stern A., “Noncommutative BTZ black hole and discrete time”, Classical Quantum Gravity, 24 (2007), 1647–1655 ; ; Dolan B. P., Gupta K. S., Stern A., “Noncommutativity and quantum structure of spacetime”, J. Phys. Conf. Ser., 174 (2009), 012023, 6 pp., ages hep-th/0611233 | DOI | MR | Zbl | DOI
[17] Groenewold H. J., “On the principles of elementary quantum mechanics”, Physica, 12 (1946), 405–460 | DOI | MR | Zbl
[18] Moyal J. E., “Quantum mechanics as a statistical theory”, Proc. Cambridge Philos. Soc., 45 (1949), 99–124 | DOI | MR | Zbl
[19] Utiyama R., “Invariant theoretical interpretation of interaction”, Phys. Rev., 101 (1956), 1597–1607 | DOI | MR | Zbl
[20] Kibble T. W. B., “Lorentz invariance and the gravitational field”, J. Math. Phys., 2 (1961), 212–221 | DOI | MR | Zbl
[21] Hehl F. W., Von Der Heyde P., Kerlick G. D., Nester J. M., “General relativity with spin and torsion: foundations and prospects”, Rev. Modern Phys., 48 (1976), 393–416 | DOI | MR
[22] Chamseddine A. H., “Applications of the gauge principle to gravitational interactions”, Int. J. Geom. Methods Mod. Phys., 3 (2006), 149–176 ; hep-th/0511074 | DOI | MR
[23] Isham C. J., Salam A., Strathdee J. A., “$\mathrm{SL}_{6,C}$ gauge invariance of Einstein like Lagrangians”, Lett. Nuovo Cimento, 5 (1972), 969–972 | DOI | MR
[24] Jurco B., Schraml S., Schupp P., Wess J., “Enveloping algebra valued gauge transformations for non-abelian gauge groups on non-commutative spaces”, Eur. Phys. J. C Part. Fields, 17 (2000), 521–526 ; hep-th/0006246 | DOI | MR | Zbl
[25] Bonora L., Schnabl M., Sheikh-Jabbari M. M., Tomasiello A., “Noncommutative $\mathrm{SO}(n)$ and $\mathrm{Sp}(n)$ gauge theories”, Nuclear Phys. B, 589 (2000), 461–474 ; hep-th/0006091 | DOI | MR | Zbl
[26] Marculescu S., Ruiz Ruiz F., “Seiberg–Witten maps for $\mathrm{SO}(1,3)$ gauge invariance and deformations of gravity”, Phys. Rev. D, 79 (2009), 025004, 18 pp., ages ; arXiv:0808.2066 | DOI | MR
[27] Davis A.-C., Lilley M., Törnkvist O., “Relaxing the bounds on primordial magnetic seed fields”, Phys. Rev. D, 60 (1999), 021301, 5 pp., ages ; astro-ph/9904022 | DOI
[28] Mazumdar A., Sheikh-Jabbari M. M., “Noncommutativity in space and primordial magnetic field”, Phys. Rev. Lett., 87 (2001), 011301, 4 pp., ages ; hep-ph/0012363 | DOI | MR
[29] Nasseri F., “Schwarzschild black hole in noncommutative spaces”, Gen. Relativity Gravitation, 37 (2005), 2223–2226 ; hep-th/0508051 | DOI | MR | Zbl
[30] Nozari K., Fazlpour B., “Reissner–Nordström black hole thermodynamics in noncommutative spaces”, Acta Phys. Polon. B, 39 (2008), 1363–1374 | MR
[31] Banerjee R., Majhi B. R., Samanta S., “Noncommutative black hole thermodynamics”, Phys. Rev. D, 77 (2008), 124035, 8 pp., ages ; arXiv:0801.3583 | DOI | MR
[32] Banerjee R., Majhi B. R., Modak S. K., “Noncommutative Schwarzschild black hole and area law”, Classical Quantum Gravity, 26 (2009), 085010, 11 pp., ages ; arXiv:0802.2176 | DOI | MR | Zbl