Emergent Abelian Gauge Fields from Noncommutative Gravity
Symmetry, integrability and geometry: methods and applications, Tome 6 (2010) Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We construct exact solutions to noncommutative gravity following the formulation of Chamseddine and show that they are in general accompanied by Abelian gauge fields which are first order in the noncommutative scale. This provides a mechanism for generating cosmological electromagnetic fields in an expanding space-time background, and also leads to multipole-like fields surrounding black holes. Exact solutions to noncommutative Einstein–Maxwell theory can give rise to first order corrections to the metric tensor, as well as to the electromagnetic fields. This leads to first order shifts in the horizons of charged black holes.
Keywords: noncommutative gravity; Groenewold–Moyal star; exact solutions.
@article{SIGMA_2010_6_a18,
     author = {Allen Stern},
     title = {Emergent {Abelian} {Gauge} {Fields} from {Noncommutative} {Gravity}},
     journal = {Symmetry, integrability and geometry: methods and applications},
     year = {2010},
     volume = {6},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SIGMA_2010_6_a18/}
}
TY  - JOUR
AU  - Allen Stern
TI  - Emergent Abelian Gauge Fields from Noncommutative Gravity
JO  - Symmetry, integrability and geometry: methods and applications
PY  - 2010
VL  - 6
UR  - http://geodesic.mathdoc.fr/item/SIGMA_2010_6_a18/
LA  - en
ID  - SIGMA_2010_6_a18
ER  - 
%0 Journal Article
%A Allen Stern
%T Emergent Abelian Gauge Fields from Noncommutative Gravity
%J Symmetry, integrability and geometry: methods and applications
%D 2010
%V 6
%U http://geodesic.mathdoc.fr/item/SIGMA_2010_6_a18/
%G en
%F SIGMA_2010_6_a18
Allen Stern. Emergent Abelian Gauge Fields from Noncommutative Gravity. Symmetry, integrability and geometry: methods and applications, Tome 6 (2010). http://geodesic.mathdoc.fr/item/SIGMA_2010_6_a18/

[1] Doplicher S., Fredenhagen K., Roberts J. E., “Spacetime quantization induced by classical gravity”, Phys. Lett. B, 331 (1994), 39–44 | DOI | MR

[2] Stern A., “Noncommutative point sources”, Phys. Rev. Lett., 100 (2008), 061601, 4 pp., ages ; arXiv:0709.3831 | DOI | MR

[3] Stern A., “Particlelike solutions to classical noncommutative gauge theory”, Phys. Rev. D, 78 (2008), 065006, 11 pp., ages ; arXiv:0804.3121 | DOI | MR

[4] Pinzul A., Stern A., “Noncommutative AdS$^3$ with quantized cosmological constant”, Classical Quantum Gravity, 23 (2006), 1009–1021 ; hep-th/0511071 | DOI | MR | Zbl

[5] Chaichian M., Tureanu A., Zet G., “Corrections to Schwarzschild solution in noncommutative gauge theory of gravity”, Phys. Lett. B, 660 (2008), 573–578 ; ; Chaichian M., Setare M. R., Tureanu A., Zet G., “On black holes and cosmological constant in noncommutative gauge theory of gravity”, J. High Energy Phys., 2008:4 (2008), 064, 18 pp., ages ; arXiv:0710.2075arXiv:0711.4546 | DOI | MR | DOI | MR

[6] Fabi S., Harms B., Stern A., “Noncommutative corrections to the Robertson–Walker metric”, Phys. Rev. D, 78 (2008), 065037, 7 pp., ages ; arXiv:0808.0943 | DOI | MR

[7] Calmet X., Kobakhidze A., “Second order noncommutative corrections to gravity”, Phys. Rev. D, 74 (2006), 047702, 3 pp., ages ; hep-th/0605275 | DOI

[8] Banerjee R., Mukherjee P., Samanta S., “Lie algebraic noncommutative gravity”, Phys. Rev. D, 75 (2007), 125020, 7 pp., ages ; hep-th/0703128 | DOI | MR

[9] Seiberg N., Witten E., “String theory and noncommutative geometry”, J. High Energy Phys., 1999:9 (1999), 032, 93 pp., ages ; hep-th/9908142 | DOI | MR | Zbl

[10] Chamseddine A. H., “Deforming Einstein's gravity”, Phys. Lett. B, 504 (2001), 33–37 ; hep-th/0009153 | DOI | MR | Zbl

[11] Chamseddine A. H., “$\mathrm{SL}(2,C)$ gravity with a complex vierbein and its noncommutative extension”, Phys. Rev. D, 69 (2004), 024015, 8 pp., ages ; hep-th/0309166 | DOI | MR

[12] Stern A., “Particle classification and dynamics in $\mathrm{GL}(2,C)$ gravity”, Phys. Rev. D, 79 (2009), 105017, 16 pp., ages ; arXiv:0903.0882 | DOI | MR

[13] Aschieri P., Blohmann C., Dimitrijevic M., Meyer F., Schupp P., Wess J., “A gravity theory on noncommutative spaces”, Classical Quantum Gravity, 22 (2005), 3511–3532 ; hep-th/0504183 | DOI | MR | Zbl

[14] Schupp P., Solodukhin S., Exact black hole solutions in noncommutative gravity, arXiv:0906.2724

[15] Ohl T., Schenkel A., “Cosmological and black hole spacetimes in twisted noncommutative gravity”, J. High Energy Phys., 2009:10 (2009), 052, 12 pp., ages ; arXiv:0906.2730 | DOI | MR

[16] Dolan B. P., Gupta K. S., Stern A., “Noncommutative BTZ black hole and discrete time”, Classical Quantum Gravity, 24 (2007), 1647–1655 ; ; Dolan B. P., Gupta K. S., Stern A., “Noncommutativity and quantum structure of spacetime”, J. Phys. Conf. Ser., 174 (2009), 012023, 6 pp., ages hep-th/0611233 | DOI | MR | Zbl | DOI

[17] Groenewold H. J., “On the principles of elementary quantum mechanics”, Physica, 12 (1946), 405–460 | DOI | MR | Zbl

[18] Moyal J. E., “Quantum mechanics as a statistical theory”, Proc. Cambridge Philos. Soc., 45 (1949), 99–124 | DOI | MR | Zbl

[19] Utiyama R., “Invariant theoretical interpretation of interaction”, Phys. Rev., 101 (1956), 1597–1607 | DOI | MR | Zbl

[20] Kibble T. W. B., “Lorentz invariance and the gravitational field”, J. Math. Phys., 2 (1961), 212–221 | DOI | MR | Zbl

[21] Hehl F. W., Von Der Heyde P., Kerlick G. D., Nester J. M., “General relativity with spin and torsion: foundations and prospects”, Rev. Modern Phys., 48 (1976), 393–416 | DOI | MR

[22] Chamseddine A. H., “Applications of the gauge principle to gravitational interactions”, Int. J. Geom. Methods Mod. Phys., 3 (2006), 149–176 ; hep-th/0511074 | DOI | MR

[23] Isham C. J., Salam A., Strathdee J. A., “$\mathrm{SL}_{6,C}$ gauge invariance of Einstein like Lagrangians”, Lett. Nuovo Cimento, 5 (1972), 969–972 | DOI | MR

[24] Jurco B., Schraml S., Schupp P., Wess J., “Enveloping algebra valued gauge transformations for non-abelian gauge groups on non-commutative spaces”, Eur. Phys. J. C Part. Fields, 17 (2000), 521–526 ; hep-th/0006246 | DOI | MR | Zbl

[25] Bonora L., Schnabl M., Sheikh-Jabbari M. M., Tomasiello A., “Noncommutative $\mathrm{SO}(n)$ and $\mathrm{Sp}(n)$ gauge theories”, Nuclear Phys. B, 589 (2000), 461–474 ; hep-th/0006091 | DOI | MR | Zbl

[26] Marculescu S., Ruiz Ruiz F., “Seiberg–Witten maps for $\mathrm{SO}(1,3)$ gauge invariance and deformations of gravity”, Phys. Rev. D, 79 (2009), 025004, 18 pp., ages ; arXiv:0808.2066 | DOI | MR

[27] Davis A.-C., Lilley M., Törnkvist O., “Relaxing the bounds on primordial magnetic seed fields”, Phys. Rev. D, 60 (1999), 021301, 5 pp., ages ; astro-ph/9904022 | DOI

[28] Mazumdar A., Sheikh-Jabbari M. M., “Noncommutativity in space and primordial magnetic field”, Phys. Rev. Lett., 87 (2001), 011301, 4 pp., ages ; hep-ph/0012363 | DOI | MR

[29] Nasseri F., “Schwarzschild black hole in noncommutative spaces”, Gen. Relativity Gravitation, 37 (2005), 2223–2226 ; hep-th/0508051 | DOI | MR | Zbl

[30] Nozari K., Fazlpour B., “Reissner–Nordström black hole thermodynamics in noncommutative spaces”, Acta Phys. Polon. B, 39 (2008), 1363–1374 | MR

[31] Banerjee R., Majhi B. R., Samanta S., “Noncommutative black hole thermodynamics”, Phys. Rev. D, 77 (2008), 124035, 8 pp., ages ; arXiv:0801.3583 | DOI | MR

[32] Banerjee R., Majhi B. R., Modak S. K., “Noncommutative Schwarzschild black hole and area law”, Classical Quantum Gravity, 26 (2009), 085010, 11 pp., ages ; arXiv:0802.2176 | DOI | MR | Zbl