The Integrability of New Two-Component KdV Equation
Symmetry, integrability and geometry: methods and applications, Tome 6 (2010) Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We consider the bi-Hamiltonian representation of the two-component coupled KdV equations discovered by Drinfel'd and Sokolov and rediscovered by Sakovich and Foursov. Connection of this equation with the supersymmetric Kadomtsev–Petviashvilli–Radul–Manin hierarchy is presented. For this new supersymmetric equation the Lax representation and odd Hamiltonian structure is given.
Keywords: KdV equation; Lax representation; integrability; supersymmetry.
@article{SIGMA_2010_6_a17,
     author = {Ziemowit Popowicz},
     title = {The {Integrability} of {New} {Two-Component} {KdV} {Equation}},
     journal = {Symmetry, integrability and geometry: methods and applications},
     year = {2010},
     volume = {6},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SIGMA_2010_6_a17/}
}
TY  - JOUR
AU  - Ziemowit Popowicz
TI  - The Integrability of New Two-Component KdV Equation
JO  - Symmetry, integrability and geometry: methods and applications
PY  - 2010
VL  - 6
UR  - http://geodesic.mathdoc.fr/item/SIGMA_2010_6_a17/
LA  - en
ID  - SIGMA_2010_6_a17
ER  - 
%0 Journal Article
%A Ziemowit Popowicz
%T The Integrability of New Two-Component KdV Equation
%J Symmetry, integrability and geometry: methods and applications
%D 2010
%V 6
%U http://geodesic.mathdoc.fr/item/SIGMA_2010_6_a17/
%G en
%F SIGMA_2010_6_a17
Ziemowit Popowicz. The Integrability of New Two-Component KdV Equation. Symmetry, integrability and geometry: methods and applications, Tome 6 (2010). http://geodesic.mathdoc.fr/item/SIGMA_2010_6_a17/

[1] Svinolupov S., “Jordan algebras and integrable systems”, Funct. Anal. Appl., 27 (1993), 257–265 ; Svinolupov S., “Jordan algebras and generalized Korteweg–de Vries equations”, Theoret. and Math. Phys., 87:3 (1991), 611–620 | DOI | MR | Zbl | DOI | MR | Zbl

[2] Gürses M., Karasu A., “Integrable coupled KdV systems”, J. Math. Phys., 39 (1998), 2103–2111 ; ; Gürses M., Karasu A., “Integrable KdV systems: recursion operators of degree four”, Phys. Lett. A, 251 (1999), 247–249 ; solv-int/9711015solv-int/9811013 | DOI | MR | Zbl | DOI | MR | Zbl

[3] Antonowicz M., Fordy A. P., “Coupled KdV equations with multi-Hamiltonian structures”, Phys. D, 28 (1987), 345–357 | DOI | MR | Zbl

[4] Ma W.-X., “A class of coupled KdV systems and their bi-Hamiltonian formulation”, J. Phys. A: Math. Gen., 31 (1998), 7585–7591 ; solv-int/9803009 | DOI | MR | Zbl

[5] Foursov M. V., “Towards the complete classification of homogeneous two-component integrable equations”, J. Math. Phys., 44 (2003), 3088–3096 | DOI | MR | Zbl

[6] Drinfel'd V. G., Sokolov V. V., “New evolutionary equations possessing an $(L,A)$-pair”, Trudy Sem. S. L. Soboleva, 2 (1981), 5–9 (in Russian) | MR

[7] Kupershmidt B. A., Elements of superintegrable systems. Basic techniques and results, Mathematics and its Applications, 34, D. Reidel Publishing Co., Dordrecht, 1987 | MR | Zbl

[8] Gürses M., Oguz O., “A super AKNS scheme”, Phys. Lett. A, 108 (1985), 437–440 | DOI | MR

[9] Kulish P. P., “Quantum osp-invariant nonlinear Schrödinger equation”, Lett. Math. Phys., 10 (1985), 87–93 | DOI | MR | Zbl

[10] Manin Yu. I., Radul A. O., “A supersymmetric extension of the Kadomtsev–Petviashvili hierarchy”, Comm. Math. Phys., 98 (1985), 65–77 | DOI | MR | Zbl

[11] Mathieu P., “Supersymmetric extension of the Korteweg–de Vries equation”, J. Math. Phys., 29 (1988), 2499–2506 | DOI | MR | Zbl

[12] Laberge C. A., Mathieu P., “$N=2$ superconformal algebra and integrable $O(2)$ fermionic extensions of the Korteweg–de Vries equation”, Phys. Lett. B, 215 (1988), 718–722 | DOI | MR

[13] Labelle P., Mathieu P., “A new $N=2$ supersymmetric Korteweg–de Vries equation”, J. Math. Phys., 32 (1991), 923–927 | DOI | MR | Zbl

[14] Chaichian M., Lukierski J., “$N=1$ super-WZW and $N=1,2,3,4$ super-KdV models as $D=2$ current superfield theories”, Phys. Lett. B, 212 (1988), 451–466 | DOI | MR

[15] Oevel W., Popowicz Z., “The bi-Hamiltonian structure of fully supersymmetric Korteweg–de Vries systems”, Comm. Math. Phys., 139 (1991), 441–460 | DOI | MR | Zbl

[16] Hirota R., Satsuma J., “Soliton solutions of a coupled Korteweg–de Vries equation”, Phys. Lett. A, 85 (1981), 407–408 | DOI | MR

[17] Ito M., “Symmetries and conservation laws of a coupled nonlinear wave equation”, Phys. Lett. A, 91 (1982), 335–338 | DOI | MR

[18] Sakovich S. Yu., “Coupled KdV equations of Hirota–Satsuma type”, J. Nonlinear Math. Phys., 6 (1999), 255–262 ; ; Sakovich S. Yu., “Addendum to: “Coupled KdV equations of Hirota–Satsuma type””, J. Nonlinear Math. Phys., 8 (2001), 311–312 ; solv-int/9901005nlin.SI/0104072 | DOI | MR | Zbl | DOI | MR | Zbl

[19] Dodd R., Fordy A., “On the integrability of a system of coupled KdV equations”, Phys. Lett. A, 89 (1982), 168–170 | DOI | MR

[20] Popowicz Z., “The extended supersymmetrization of the multicomponent Kadomtsev–Petviashvilli hierarchy”, J. Phys. A: Math. Gen., 19 (1996), 1281–1291 | DOI | MR

[21] Błaszak M., Multi-Hamiltonian theory of dynamical systems, Texts and Monographs in Physics, Springer-Verlag, Berlin, 1998 | MR

[22] Gürses M., Karasu A., Sokolov V. V., “On construction of recursion operators from Lax representation”, J. Math. Phys., 40 (1999), 6473–6490 ; solv-int/9909003 | DOI | MR | Zbl

[23] Popowicz Z., “Odd Hamiltonian structure for supersymmetric Sawada–Kotera equation”, Phys. Lett. A, 373 (2009), 3315–3323 ; arXiv:0902.2861 | DOI | MR

[24] Tian K., Liu Q. P., “A supersymmetric Sawada–Kotera equation”, Phys. Lett. A, 373 (2009), 1807–1810 ; arXiv:0802.4011 | DOI | MR

[25] Aratyn H., Nissimov E., Pacheva S., “Supersymmetric Kadomtsev–Petviashvili hierarchy: “ghost” symmetry structure, reductions, and Darboux–Bäcklund solutions”, J. Math. Phys., 40 (1999), 2922–2932 ; ; Aratyn H., Nissimov E., Pacheva S., Berezinian construction of super-solitons in supersymmetric constrained KP hierarchy ; solv-int/9801021solv-int/9808004 | DOI | MR | Zbl