@article{SIGMA_2010_6_a17,
author = {Ziemowit Popowicz},
title = {The {Integrability} of {New} {Two-Component} {KdV} {Equation}},
journal = {Symmetry, integrability and geometry: methods and applications},
year = {2010},
volume = {6},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SIGMA_2010_6_a17/}
}
Ziemowit Popowicz. The Integrability of New Two-Component KdV Equation. Symmetry, integrability and geometry: methods and applications, Tome 6 (2010). http://geodesic.mathdoc.fr/item/SIGMA_2010_6_a17/
[1] Svinolupov S., “Jordan algebras and integrable systems”, Funct. Anal. Appl., 27 (1993), 257–265 ; Svinolupov S., “Jordan algebras and generalized Korteweg–de Vries equations”, Theoret. and Math. Phys., 87:3 (1991), 611–620 | DOI | MR | Zbl | DOI | MR | Zbl
[2] Gürses M., Karasu A., “Integrable coupled KdV systems”, J. Math. Phys., 39 (1998), 2103–2111 ; ; Gürses M., Karasu A., “Integrable KdV systems: recursion operators of degree four”, Phys. Lett. A, 251 (1999), 247–249 ; solv-int/9711015solv-int/9811013 | DOI | MR | Zbl | DOI | MR | Zbl
[3] Antonowicz M., Fordy A. P., “Coupled KdV equations with multi-Hamiltonian structures”, Phys. D, 28 (1987), 345–357 | DOI | MR | Zbl
[4] Ma W.-X., “A class of coupled KdV systems and their bi-Hamiltonian formulation”, J. Phys. A: Math. Gen., 31 (1998), 7585–7591 ; solv-int/9803009 | DOI | MR | Zbl
[5] Foursov M. V., “Towards the complete classification of homogeneous two-component integrable equations”, J. Math. Phys., 44 (2003), 3088–3096 | DOI | MR | Zbl
[6] Drinfel'd V. G., Sokolov V. V., “New evolutionary equations possessing an $(L,A)$-pair”, Trudy Sem. S. L. Soboleva, 2 (1981), 5–9 (in Russian) | MR
[7] Kupershmidt B. A., Elements of superintegrable systems. Basic techniques and results, Mathematics and its Applications, 34, D. Reidel Publishing Co., Dordrecht, 1987 | MR | Zbl
[8] Gürses M., Oguz O., “A super AKNS scheme”, Phys. Lett. A, 108 (1985), 437–440 | DOI | MR
[9] Kulish P. P., “Quantum osp-invariant nonlinear Schrödinger equation”, Lett. Math. Phys., 10 (1985), 87–93 | DOI | MR | Zbl
[10] Manin Yu. I., Radul A. O., “A supersymmetric extension of the Kadomtsev–Petviashvili hierarchy”, Comm. Math. Phys., 98 (1985), 65–77 | DOI | MR | Zbl
[11] Mathieu P., “Supersymmetric extension of the Korteweg–de Vries equation”, J. Math. Phys., 29 (1988), 2499–2506 | DOI | MR | Zbl
[12] Laberge C. A., Mathieu P., “$N=2$ superconformal algebra and integrable $O(2)$ fermionic extensions of the Korteweg–de Vries equation”, Phys. Lett. B, 215 (1988), 718–722 | DOI | MR
[13] Labelle P., Mathieu P., “A new $N=2$ supersymmetric Korteweg–de Vries equation”, J. Math. Phys., 32 (1991), 923–927 | DOI | MR | Zbl
[14] Chaichian M., Lukierski J., “$N=1$ super-WZW and $N=1,2,3,4$ super-KdV models as $D=2$ current superfield theories”, Phys. Lett. B, 212 (1988), 451–466 | DOI | MR
[15] Oevel W., Popowicz Z., “The bi-Hamiltonian structure of fully supersymmetric Korteweg–de Vries systems”, Comm. Math. Phys., 139 (1991), 441–460 | DOI | MR | Zbl
[16] Hirota R., Satsuma J., “Soliton solutions of a coupled Korteweg–de Vries equation”, Phys. Lett. A, 85 (1981), 407–408 | DOI | MR
[17] Ito M., “Symmetries and conservation laws of a coupled nonlinear wave equation”, Phys. Lett. A, 91 (1982), 335–338 | DOI | MR
[18] Sakovich S. Yu., “Coupled KdV equations of Hirota–Satsuma type”, J. Nonlinear Math. Phys., 6 (1999), 255–262 ; ; Sakovich S. Yu., “Addendum to: “Coupled KdV equations of Hirota–Satsuma type””, J. Nonlinear Math. Phys., 8 (2001), 311–312 ; solv-int/9901005nlin.SI/0104072 | DOI | MR | Zbl | DOI | MR | Zbl
[19] Dodd R., Fordy A., “On the integrability of a system of coupled KdV equations”, Phys. Lett. A, 89 (1982), 168–170 | DOI | MR
[20] Popowicz Z., “The extended supersymmetrization of the multicomponent Kadomtsev–Petviashvilli hierarchy”, J. Phys. A: Math. Gen., 19 (1996), 1281–1291 | DOI | MR
[21] Błaszak M., Multi-Hamiltonian theory of dynamical systems, Texts and Monographs in Physics, Springer-Verlag, Berlin, 1998 | MR
[22] Gürses M., Karasu A., Sokolov V. V., “On construction of recursion operators from Lax representation”, J. Math. Phys., 40 (1999), 6473–6490 ; solv-int/9909003 | DOI | MR | Zbl
[23] Popowicz Z., “Odd Hamiltonian structure for supersymmetric Sawada–Kotera equation”, Phys. Lett. A, 373 (2009), 3315–3323 ; arXiv:0902.2861 | DOI | MR
[24] Tian K., Liu Q. P., “A supersymmetric Sawada–Kotera equation”, Phys. Lett. A, 373 (2009), 1807–1810 ; arXiv:0802.4011 | DOI | MR
[25] Aratyn H., Nissimov E., Pacheva S., “Supersymmetric Kadomtsev–Petviashvili hierarchy: “ghost” symmetry structure, reductions, and Darboux–Bäcklund solutions”, J. Math. Phys., 40 (1999), 2922–2932 ; ; Aratyn H., Nissimov E., Pacheva S., Berezinian construction of super-solitons in supersymmetric constrained KP hierarchy ; solv-int/9801021solv-int/9808004 | DOI | MR | Zbl