Solitary Waves in Massive Nonlinear $\mathbb S^N$-Sigma Models
Symmetry, integrability and geometry: methods and applications, Tome 6 (2010) Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The solitary waves of massive $(1+1)$-dimensional nonlinear $\mathbb S^N$-sigma models are unveiled. It is shown that the solitary waves in these systems are in one-to-one correspondence with the separatrix trajectories in the repulsive $N$-dimensional Neumann mechanical problem. There are topological (heteroclinic trajectories) and non-topological (homoclinic trajectories) kinks. The stability of some embedded sine-Gordon kinks is discussed by means of the direct estimation of the spectra of the second-order fluctuation operators around them, whereas the instability of other topological and non-topological kinks is established applying the Morse index theorem.
Keywords: solitary waves; nonlinear sigma models.
@article{SIGMA_2010_6_a16,
     author = {Alberto Alonso Izquierdo and Miguel \'Angel Gonz\'alez Le\'on and Marina de la Torre Mayado},
     title = {Solitary {Waves} in {Massive} {Nonlinear} $\mathbb S^N${-Sigma} {Models}},
     journal = {Symmetry, integrability and geometry: methods and applications},
     year = {2010},
     volume = {6},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SIGMA_2010_6_a16/}
}
TY  - JOUR
AU  - Alberto Alonso Izquierdo
AU  - Miguel Ángel González León
AU  - Marina de la Torre Mayado
TI  - Solitary Waves in Massive Nonlinear $\mathbb S^N$-Sigma Models
JO  - Symmetry, integrability and geometry: methods and applications
PY  - 2010
VL  - 6
UR  - http://geodesic.mathdoc.fr/item/SIGMA_2010_6_a16/
LA  - en
ID  - SIGMA_2010_6_a16
ER  - 
%0 Journal Article
%A Alberto Alonso Izquierdo
%A Miguel Ángel González León
%A Marina de la Torre Mayado
%T Solitary Waves in Massive Nonlinear $\mathbb S^N$-Sigma Models
%J Symmetry, integrability and geometry: methods and applications
%D 2010
%V 6
%U http://geodesic.mathdoc.fr/item/SIGMA_2010_6_a16/
%G en
%F SIGMA_2010_6_a16
Alberto Alonso Izquierdo; Miguel Ángel González León; Marina de la Torre Mayado. Solitary Waves in Massive Nonlinear $\mathbb S^N$-Sigma Models. Symmetry, integrability and geometry: methods and applications, Tome 6 (2010). http://geodesic.mathdoc.fr/item/SIGMA_2010_6_a16/

[1] Alonso Izquierdo A., González León M. A., Mateos Guilarte J., “Kinks in a nonlinear massive sigma model”, Phys. Rev. Lett., 101 (2008), 131602, 4 pp., ages ; arXiv:0808.3052 | DOI

[2] Alonso Izquierdo A., González León M. A., Mateos Guilarte J., “BPS and non-BPS kinks in a massive nonlinear $S^2$-sigma model”, Phys. Rev. D, 79 (2009), 125003, 16 pp., ages ; arXiv:0903.0593 | DOI | MR

[3] Alonso Izquierdo A., González León M. A., Mateos Guilarte J., Senosiain M. J., “On the semiclassical mass of $S^2$-kinks”, J. Phys. A: Math. Theor., 42 (2009), 385403, 18 pp., ages ; arXiv:0906.1258 | DOI | Zbl

[4] Gell-Mann M., Lévy M., “The axial vector current in beta decay”, Nuovo Cimento (10), 16 (1960), 705–726 | DOI | MR | Zbl

[5] Brézin E., Zinn-Justin J., Le Guillou J. C., “Renormalization of the nonlinear $\sigma$-model in $2+\varepsilon$ dimensions”, Phys. Rev. D, 14 (1976), 2615–2621 | DOI

[6] Woodford S. R., Barashenkov I. V., “Stability of the Bloch wall via the Bogomolnyi decomposition in elliptic coordinates”, J. Phys. A: Math. Teor., 41 (2008), 185203, 11 pp., ages ; arXiv:0803.2299 | DOI | MR | Zbl

[7] Barashenkov I. V., Woodford S. R., Zemlyanaya E. V., “Interactions of parametrically driven dark solitons. I. Néel–Néel and Bloch–Bloch interactions”, Phys. Rev. E, 75 (2007), 026604, 18 pp., ages ; ; Barashenkov I. V., Woodford S. R., “Interactions of parametrically driven dark solitons. II. Néel–Bloch interactions”, Phys. Rev. E, 75 (2007), 026605, 14 pp., ages ; nlin.SI/0612059nlin.SI/0701005 | DOI | MR | DOI | MR

[8] Barashenkov I. V., Woodford S. R., Zemlyanaya E. V., “Parametrically driven dark solitons”, Phys. Rev. Lett., 90 (2003), 054103, 4 pp., ages ; nlin.SI/0212052 | DOI

[9] Rajaraman R., Solitons and instantons. An introduction to solitons and instantons in quantum field theory, North-Holland Publishing Co., Amsterdam, 1982 | MR | Zbl

[10] Alonso Izquierdo A., González León M. A., Mateos Guilarte J., “Kink manifolds in (1+1)-dimensional scalar field theory”, J. Phys. A: Math. Gen., 31 (1998), 209–229 | DOI | MR | Zbl

[11] Alonso Izquierdo A., Mateos Guilarte J., “Generalized MSTB models: structure and kink varietes”, Phys. D, 237 (2008), 3263–3291 ; arXiv:0802.0153 | DOI | MR | Zbl

[12] Alonso Izquierdo A., González León M. A., Mateos Guilarte J., “Kinks from dynamical systems: domain walls in a deformed linear $O(N)$ sigma model”, Nonlinearity, 13 (2000), 1137–1169 ; hep-th/0003224 | DOI | MR | Zbl

[13] Neumann C., “De problemate quodam mechanico, quod ad primam integralium ultraelipticorum classem revocatur”, J. Reine Angew. Math., 56 (1859), 46–63 | Zbl

[14] Moser J., “Various aspects of integrable Hamiltonian systems”, Dynamical Systems (C.I.M.E. Summer School, Bressanone, 1978), Progr. Math., 8, Birkhäuser, Boston, 1980, 233–289 | MR

[15] Dubrovin B.A., “Theta functions and nonlinear equations”, Uspekhi Mat. Nauk, 36:2(218) (1981), 11–80 | MR | Zbl

[16] Alonso Izquierdo A., González León M. A., Mateos Guilarte J., “Stability of kink defects in a deformed $O(3)$ linear sigma model”, Nonlinearity, 15 (2002), 1097–1125 ; math-ph/0204041 | DOI | MR | Zbl

[17] Bogomolnyi E. B., “The stability of classical solutions”, Soviet J. Nuclear Phys., 24 (1976), 449–454 | MR

[18] Mumford D., Tata lectures on theta. II. Jacobian theta functions and differential equations, Progr. Math., 43, Birkhäuser, Boston, 1984 | MR | Zbl

[19] Ito H., Tasaki H., “Stability theory for nonlinear Klein–Gordon kinks and the Morse's index theorem”, Phys. Lett. A, 113 (1985), 179–182 | DOI | MR