@article{SIGMA_2010_6_a14,
author = {Kwang C. Shin},
title = {Anharmonic {Oscillators} with {Infinitely} {Many} {Real} {Eigenvalues} and $\mathcal{PT}${-Symmetry}},
journal = {Symmetry, integrability and geometry: methods and applications},
year = {2010},
volume = {6},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SIGMA_2010_6_a14/}
}
Kwang C. Shin. Anharmonic Oscillators with Infinitely Many Real Eigenvalues and $\mathcal{PT}$-Symmetry. Symmetry, integrability and geometry: methods and applications, Tome 6 (2010). http://geodesic.mathdoc.fr/item/SIGMA_2010_6_a14/
[1] Bender C. M., Boettcher S., “Real spectra in non-Hermitian Hamiltonians having $\mathcal{PT}$-symmetry”, Phys. Rev. Lett., 80 (1998), 5243–5246 ; physics/9712001 | DOI | MR | Zbl
[2] Bender C. M., Hook D. W., Mead L. R., “Conjecture on the analyticity of $\mathcal{PT}$-symmetric potentials and the reality of their spectra”, J. Phys. A: Math. Theor., 41 (2008), 392005, 9 pp., ages ; arXiv:0807.0424 | DOI | MR | Zbl
[3] Caliceti E., Graffi S., Sjöstrand J., “$\mathcal{PT}$ symmetric non-self-adjoint operators, diagonalizable and non-diagonalizable, with a real discrete spectrum”, J. Phys. A: Math. Theor., 40 (2007), 10155–10170 ; arXiv:0705.4218 | DOI | MR | Zbl
[4] Conway J. B., Functions of one complex variable. I, 2nd ed., Springer-Verlag, New York, 1995 | MR
[5] Dorey P., Dunning C., Tateo R., “Spectral equivalences, Bethe ansatz equations, and reality properties in $\mathcal{PT}$-symmetric quantum mechanics”, J. Phys. A: Math. Gen., 34 (2001), 5679–5704 ; hep-th/0103051 | DOI | MR | Zbl
[6] Hille E., Lectures on ordinary differential equations, Addison-Wesley Publ. Co., Reading, Massachusetts, 1969 | MR | Zbl
[7] Lévai G., Siegl P., Znojil M., “Scattering in the $\mathcal{PT}$-symmetric Coulomb potential”, J. Phys. A: Math. Theor., 42 (2009), 295201, 9 pp., ages ; arXiv:0906.2092 | DOI | MR | Zbl
[8] Mostafazadeh A., “Pseudo-Hermiticity versus $\mathcal{PT}$ symmetry: the necessary condition for the reality of the spectrum of a non-Hermitian Hamiltonian”, J. Math. Phys., 43 (2002), 205–214 ; math-ph/0107001 | DOI | MR | Zbl
[9] Shin K. C., “On the reality of the eigenvalues for a class of $\mathcal{PT}$-symmetric oscillators”, Comm. Math. Phys., 229 (2002), 543–564 ; math-ph/0201013 | DOI | MR | Zbl
[10] Shin K. C., “Eigenvalues of $\mathcal{PT}$-symmetric oscillators with polynomial potentials”, J. Phys. A: Math. Gen., 38 (2005), 6147–6166 ; math.SP/0407018 | DOI | MR | Zbl
[11] Shin K. C., “Asymptotics of eigenvalues of non-self adjoint Schrödinger operators on a half-line”, Comput. Methods Funct. Theory (to appear)
[12] Sibuya Y., Global theory of a second order linear ordinary differential equation with a polynomial coefficient, North-Holland Mathematics Studies, 18, North-Holland Publishing Co., Amsterdam – Oxford, 1975 | MR | Zbl
[13] Znojil M., Siegl P., Lévai G., “Asymptotically vanishing $\mathcal{PT}$-symmetric potentials and negative-mass Schrödinger equations”, Phys. Lett. A, 373 (2009), 1921–1924 ; arXiv:0903.5468 | DOI | MR