$Q$-system Cluster Algebras, Paths and Total Positivity
Symmetry, integrability and geometry: methods and applications, Tome 6 (2010) Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

In the first part of this paper, we provide a concise review of our method of solution of the $A_r$ $Q$-systems in terms of the partition function of paths on a weighted graph. In the second part, we show that it is possible to modify the graphs and transfer matrices so as to provide an explicit connection to the theory of planar networks introduced in the context of totally positive matrices by Fomin and Zelevinsky. As an illustration of the further generality of our method, we apply it to give a simple solution for the rank 2 affine cluster algebras studied by Caldero and Zelevinsky.
Keywords: cluster algebras; total positivity.
@article{SIGMA_2010_6_a13,
     author = {Philippe Di Francesco and Rinat Kedem},
     title = {$Q$-system {Cluster} {Algebras,} {Paths} and {Total} {Positivity}},
     journal = {Symmetry, integrability and geometry: methods and applications},
     year = {2010},
     volume = {6},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SIGMA_2010_6_a13/}
}
TY  - JOUR
AU  - Philippe Di Francesco
AU  - Rinat Kedem
TI  - $Q$-system Cluster Algebras, Paths and Total Positivity
JO  - Symmetry, integrability and geometry: methods and applications
PY  - 2010
VL  - 6
UR  - http://geodesic.mathdoc.fr/item/SIGMA_2010_6_a13/
LA  - en
ID  - SIGMA_2010_6_a13
ER  - 
%0 Journal Article
%A Philippe Di Francesco
%A Rinat Kedem
%T $Q$-system Cluster Algebras, Paths and Total Positivity
%J Symmetry, integrability and geometry: methods and applications
%D 2010
%V 6
%U http://geodesic.mathdoc.fr/item/SIGMA_2010_6_a13/
%G en
%F SIGMA_2010_6_a13
Philippe Di Francesco; Rinat Kedem. $Q$-system Cluster Algebras, Paths and Total Positivity. Symmetry, integrability and geometry: methods and applications, Tome 6 (2010). http://geodesic.mathdoc.fr/item/SIGMA_2010_6_a13/

[1] Adler M., van Moerbeke P., “Integrals over classical groups, random permutations, Toda and Toeplitz lattices”, Comm. Pure Appl. Math., 54 (2001), 153–205 ; math.CO/9912143 | 3.0.CO;2-5 class='badge bg-secondary rounded-pill ref-badge extid-badge'>DOI | MR | Zbl

[2] Assem I., Reutenauer C., Smith D., Frises, arXiv:0906.2026

[3] Berenstein A., Private communication

[4] Bouttier J., Di Francesco P., Guitter E., “Geodesic distance in planar graphs”, Nuclear Phys. B, 663 (2003), 535–567 ; ; Bouttier J., Di Francesco P., Guitter E., “Random trees between two walls: exact partition function”, J. Phys. A: Math. Gen., 36 (2003), 12349–12366 ; cond-mat/0303272cond-mat/0306602 | DOI | MR | Zbl | DOI | MR | Zbl

[5] Caldero P., Zelevinsky A., “Laurent expansions in cluster algebras via quiver representations”, Mosc. Math. J., 6:3 (2006), 411–429 ; math.RT/0604054 | MR | Zbl

[6] Di Francesco P., Kedem R., “$Q$-systems as cluster algebras. II. Cartan matrix of finite type and the polynomial property”, Lett. Math. Phys., 89 (2009), 183–216 ; arXiv:0803.0362 | DOI | MR | Zbl

[7] Di Francesco P., Kedem R., “$Q$-systems, heaps, paths and cluster positivity”, Comm. Math. Phys., 293 (2010), 727–802 ; arXiv:0811.3027 | DOI | MR

[8] Fomin S., Shapiro M., Thurston D., “Cluster algebras and triangulated surfaces. I. Cluster complexes”, Acta Math., 201 (2008), 83–146 ; math.RA/0608367 | DOI | MR | Zbl

[9] Fomin S., Zelevinsky A., “Cluster algebras. I. Foundations”, J. Amer. Math. Soc., 15 (2002), 497–529 ; math.RT/0104151 | DOI | MR | Zbl

[10] Fomin S., Zelevinsky A., “Cluster algebras. IV. Coefficients”, Compos. Math., 143, 2007, 112–164 ; math.RA/0602259 | MR | Zbl

[11] Fomin S., Zelevinsky A., “Double Bruhat cells and total positivity”, J. Amer. Math. Soc., 12 (1999), 335–380 ; math.RT/9802056 | DOI | MR | Zbl

[12] Fomin S., Zelevinsky A., “The Laurent phenomenon”, Adv. in Appl. Math., 28 (2002), 119–144 ; math.CO/0104241 | DOI | MR | Zbl

[13] Fomin S., Zelevinsky A., “Total positivity: tests and parameterizations”, Math. Intelligencer, 22 (2000), 23–33 ; math.RA/9912128 | DOI | MR | Zbl

[14] Geiss C., Leclerc B., Schröer J., “Preprojective algebras and cluster algebras”, Trends in Representation Theory of Algebras and Related Topics, EMS Ser. Congr. Rep., Eur. Math. Soc., Zürich, 2008, 253–283 ; arXiv:0804.3168 | MR

[15] Gekhtman M., Shapiro M., Vainshtein A., Generalized Bäcklund–Darboux transformations for Coxeter–Toda flows from cluster algebra perspective, arXiv:0906.1364

[16] Gessel I. M., Viennot X., “Binomial determinants, paths and hook formulae”, Adv. in Math., 58 (1985), 300–321 | DOI | MR | Zbl

[17] Kazakov V., Kostov I., Nekrasov N., “$D$-particles, matrix integrals and KP hierachy”, Nuclear Phys. B, 557 (1999), 413–442 ; hep-th/9810035 | DOI | MR | Zbl

[18] Kedem R., “$Q$-systems as cluster algebras”, J. Phys. A: Math. Theor., 41 (2008), 194011, 14 pp., ages ; arXiv:0712.2695 | DOI | MR | Zbl

[19] Keller B., Cluster algebras, quiver representations and triangulated categories, arXiv:0807.1960

[20] Kirillov A. N., Reshetikhin N. Yu., “Representations of Yangians and multiplicity of occurrence of the irreducible components of the tensor product of representations of simple Lie algebras”, J. Soviet Math., 52 (1990), 3156–3164 | DOI | MR

[21] Krattenthaler C., The theory of heaps and the Cartier–Foata monoid. Appendix to the electronic republication of Cartier P., Foata D., Problèmes combinatoires de commutation et réarrangements, available at http://www.mat.univie.ac.at/~slc/books/cartfoa.html

[22] Krichever I., Lipan O., Wiegmann P., Zabrodin A., “Quantum integrable systems and elliptic solutions of classical discrete nonlinear equations”, Comm. Math. Phys., 188 (1997), 267–304 ; hep-th/9604080 | DOI | MR | Zbl

[23] Lindström B., “On the vector representations of induced matroids”, Bull. London Math. Soc., 5 (1973), 85–90 | DOI | MR | Zbl

[24] Musiker G., Schiffler R., Williams L., Positivity for cluster algebras from surfaces, arXiv:0906.0748

[25] Propp J., Musiker G., “Combinatorial interpretations for rank-two cluster algebras of affine type”, Electron. J. Combin., 14:1 (2007), R15, 23 pp., ages ; math.CO/0602408 | MR | Zbl

[26] Reshetikhin N., “Characteristic systems on Poisson Lie groups and their quantization”, Integrable Systems: from Classical to Quantum (Montreal, QC, 1999), CRM Proc. Lecture Notes, 26, Amer. Math. Soc., Providence, RI, 2000, 165–188 ; math.CO/0402452 | MR | Zbl

[27] Sherman P., Zelevinsky A., “Positivity and canonical bases in rank 2 cluster algebras of finite and affine types”, Mosc. Math. J., 4 (2004), 947–974 ; math.RT/0307082 | MR | Zbl

[28] Viennot X., “Heaps of pieces. I. Basic definitions and combinatorial lemmas”, Combinatoire Énumérative, Lecture Notes in Math., 1234, eds. G. Labelle and P. Leroux, Springer, Berlin, 1986, 321–350 | MR