@article{SIGMA_2010_6_a12,
author = {Atsuo Kuniba and Taichiro Takagi},
title = {Bethe {Ansatz,} {Inverse} {Scattering} {Transform} and {Tropical} {Riemann} {Theta} {Function} in {a~Periodic} {Soliton} {Cellular} {Automaton} for $A^{(1)}_n$},
journal = {Symmetry, integrability and geometry: methods and applications},
year = {2010},
volume = {6},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SIGMA_2010_6_a12/}
}
TY - JOUR
AU - Atsuo Kuniba
AU - Taichiro Takagi
TI - Bethe Ansatz, Inverse Scattering Transform and Tropical Riemann Theta Function in a Periodic Soliton Cellular Automaton for $A^{(1)}_n$
JO - Symmetry, integrability and geometry: methods and applications
PY - 2010
VL - 6
UR - http://geodesic.mathdoc.fr/item/SIGMA_2010_6_a12/
LA - en
ID - SIGMA_2010_6_a12
ER -
%0 Journal Article
%A Atsuo Kuniba
%A Taichiro Takagi
%T Bethe Ansatz, Inverse Scattering Transform and Tropical Riemann Theta Function in a Periodic Soliton Cellular Automaton for $A^{(1)}_n$
%J Symmetry, integrability and geometry: methods and applications
%D 2010
%V 6
%U http://geodesic.mathdoc.fr/item/SIGMA_2010_6_a12/
%G en
%F SIGMA_2010_6_a12
Atsuo Kuniba; Taichiro Takagi. Bethe Ansatz, Inverse Scattering Transform and Tropical Riemann Theta Function in a Periodic Soliton Cellular Automaton for $A^{(1)}_n$. Symmetry, integrability and geometry: methods and applications, Tome 6 (2010). http://geodesic.mathdoc.fr/item/SIGMA_2010_6_a12/
[1] Baxter R.J., Exactly solved models in statistical mechanics, Dover, 2007
[2] Bethe H. A., “Zur Theorie der Metalle. I. Eigenwerte und Eigenfunktionen der linearen Atomkettee”, Z. Phys., 71 (1931), 205–226 | DOI
[3] Date E., Tanaka S., “Periodic multi-soliton solutions of Korteweg–de Vries equation and Toda lattice”, Progr. Theoret. Phys. Suppl., 59 (1976), 107–125 | DOI | MR
[4] Dubrovin B. A., Matveev V. A., Novikov S. P., “Nonlinear equations of Korteweg–de Vries type, finite-band linear operators and Abelian varieties”, Uspehi Mat. Nauk, 31:1(187) (1976), 55–136 | MR | Zbl
[5] Fulton W., Young tableaux. With applications to representation theory and geometry, London Mathematical Society Student Texts, 35, Cambridge University Press, Cambridge, 1997 | MR | Zbl
[6] Gardner C. S., Greene J. M., Kruskal M. D., Miura R. M., “Method for solving the Korteweg–de Vries equation”, Phys. Rev. Lett., 19 (1967), 1095–1097 | DOI
[7] Hatayama G., Hikami K., Inoue R., Kuniba A., Takagi T., Tokihiro T., “The $A^{(1)}_M$ automata related to crystals of symmetric tensors”, J. Math. Phys., 42 (2001), 274–308 ; math.QA/9912209 | DOI | MR | Zbl
[8] Hatayama G., Kuniba A., Takagi T., “Factorization of combinatorial $R$ matrices and associated cellular automata”, J. Statist. Phys., 102 (2001), 843–863 ; math.QA/0003161 | DOI | MR | Zbl
[9] Inoue R., Takenawa T., “Tropical spectral curves and integrable cellular automata”, Int. Math. Res. Not., 2008 (2008), Art ID. rnn019, 27 pp., ages ; arXiv:0704.2471 | DOI | MR
[10] Inoue R., Takenawa T., “A tropical analogue of Fay's trisecant identity and the ultra-discrete periodic Toda lattice”, Comm. Math. Phys., 289 (2009), 995–1021 ; arXiv:0806.3318 | DOI | MR | Zbl
[11] Jimbo M., Miwa T., “Solitons and infinite-dimensional Lie algebras”, Publ. Res. Inst. Math. Sci., 19 (1983), 943–1001 | DOI | MR | Zbl
[12] Kang S.-J., Kashiwara M., Misra K. C., Miwa T., Nakashima T., Nakayashiki A., “Affine crystals and vertex models”, Infinite Analysis, Part A, B (Kyoto, 1991), Adv. Ser. Math. Phys., 16, World Sci. Publ., River Edge, NJ, 1992, 449–484 | MR
[13] Kang S.-J., Kashiwara M., Misra K. C., Miwa T., Nakashima T., Nakayashiki A., “Perfect crystals of quantum affine Lie algebras”, Duke Math. J., 68 (1992), 499–607 | DOI | MR | Zbl
[14] Kashiwara M., “Crystalizing the $q$-analogue of universal enveloping algebras”, Comm. Math. Phys., 133 (1990), 249–260 | DOI | MR | Zbl
[15] J. Soviet Math., 41:2 (1988), 916–924 | DOI | MR | Zbl | Zbl
[16] J. Soviet Math., 41:2 (1988), 925–955 | DOI | MR | Zbl | Zbl
[17] Kirillov A. N., Sakamoto R., “Relations between two approaches: rigged configurations and 10-eliminations”, Lett. Math. Phys., 89 (2009), 51–65 | DOI | MR | Zbl
[18] Kirillov A. N., Schilling A., Shimozono M., “A bijection between Littlewood–Richardson tableaux and rigged configurations”, Selecta Math. (N.S.), 8 (2002), 67–135 ; math.CO/9901037 | DOI | MR | Zbl
[19] Kuniba A., Nakanishi T., “Bethe equation at $q=0$, the Möbius inversion formula, and weight multiplicities. II. The $X_n$ case”, J. Algebra, 251 (2002), 577–618 ; math.QA/0008047 | DOI | MR | Zbl
[20] Kuniba A., Sakamoto R., “The Bethe ansatz in a periodic box-ball system and the ultradiscrete Riemann theta function”, J. Stat. Mech. Theory Exp., 2006:9 (2006), P09005, 11 pp., ages ; math.QA/0606208 | DOI | MR
[21] Kuniba A., Sakamoto R., “Combinatorial Bethe ansatz and ultradiscrete Riemann theta function with rational characteristics”, Lett. Math. Phys., 80 (2007), 199–209 ; nlin.SI/0611046 | DOI | MR | Zbl
[22] Kuniba A., Sakamoto R., “Combinatorial Bethe ansatz and generalized periodic box-ball system”, Rev. Math. Phys., 20 (2008), 493–527 ; arXiv:0708.3287 | DOI | MR | Zbl
[23] Kuniba A., Sakamoto R., Yamada Y., “Tau functions in combinatorial Bethe ansatz”, Nuclear Phys. B, 786 (2007), 207–266 ; math.QA/0610505 | DOI | MR | Zbl
[24] Kuniba A., Takagi T., Takenouchi A., “Bethe ansatz and inverse scattering transform in a periodic box-ball system”, Nuclear Phys. B, 747 (2006), 354–397 ; math.QA/0602481 | DOI | MR | Zbl
[25] Kuniba A., Takenouchi A., “Bethe ansatz at $q=0$ and periodic box-ball systems”, J. Phys. A: Math. Gen., 39 (2006), 2551–2562 ; nlin.SI/0509001 | DOI | MR | Zbl
[26] Kuniba A., Takenouchi A., “Periodic cellular automata and Bethe ansatz”, Differential Geometry and Physics, Nankai Tracts Math., 10, World Sci. Publ., Hackensack, NJ, 2006, 293–302 ; math-ph/0511013 | MR | Zbl
[27] Macdonald I., Symmetric functions and Hall polynomials, 2nd ed., Oxford University Press, New York, 1995 | MR | Zbl
[28] Mada J., Idzumi M., Tokihiro T., “Path description of conserved quantities of generalized periodic box-ball systems”, J. Math. Phys., 46 (2005), 022701, 19 pp., ages | DOI | MR | Zbl
[29] Mada J., Idzumi M., Tokihiro T., “The box-ball system and the $N$-soliton solution of the ultradiscrete KdV equation”, J. Phys. A: Math. Theor., 41 (2008), 175207, 23 pp., ages | DOI | MR | Zbl
[30] Mikhalkin G., Zharkov I.,, “Tropical curves, their Jacobians and theta functions”, Curves and Abelian Varieties, Contemp. Math., 465, Amer. Math. Soc., Providence, RI, 2008, 203–230 ; math.AG/0612267 | MR | Zbl
[31] Nakayashiki A., Yamada Y., “Kostka polynomials and energy functions in solvable lattice models”, Selecta Math. (N.S.), 3 (1997), 547–599 ; q-alg/9512027 | DOI | MR | Zbl
[32] Okado M., Schilling A., Shimozono M., “A crystal to rigged configuration bijection for nonexceptional affine algebras”, Algebraic Combinatorics and Quantum Groups, ed. N. Jing, World Sci. Publ., River Edge, NJ, 2003, 85–124 ; math.QA/0203163 | MR | Zbl
[33] Sakamoto R., “Kirillov–Schilling–Shimozono bijection as energy functions of crystals”, Int. Math. Res. Not., 2009:4 (2009), 579–614 ; arXiv:0711.4185 | MR | Zbl
[34] Shimozono M., “Affine type A crystal structure on tensor products of rectangles, Demazure characters, and nilpotent varieties”, J. Algebraic Combin., 15 (2002), 151–187 ; math.QA/9804039 | DOI | MR | Zbl
[35] Stanley R. P., Enumerative combinatorics, Vol. 1, Cambridge Studies in Advanced Mathematics, 49, Cambridge University Press, Cambridge, 1997 | MR | Zbl
[36] Takagi T., Level set structure of an integrable cellular automaton, arXiv:0906.1410
[37] Takahashi D., “On some soliton systems defined by using boxes and balls”, Proceedings of the International Symposium on Nonlinear Theory and Its Applications (NOLTA'93), 1993, 555–558
[38] Takahashi D., Satsuma J., “A soliton cellular automaton”, J. Phys. Soc. Japan, 59 (1990), 3514–3519 | DOI | MR
[39] Yamada Y., “A birational representation of Weyl group, combinatorial $R$-matrix and discrete Toda equation”, Physics and Combinatorics (Nagoya, 2000), eds. A.N. Kirillov and N. Liskova, World Sci. Publ., River Edge, NJ, 2001, 305–319 | MR | Zbl
[40] Yoshihara D., Yura F., Tokihiro T., “Fundamental cycle of a periodic box-ball system”, J. Phys. A: Math. Gen., 36 (2003), 99–121 ; nlin.SI/0208042 | DOI | MR | Zbl
[41] Yura F., Tokihiro T., “On a periodic soliton cellular automaton”, J. Phys. A: Math. Gen., 35 (2002), 3787–3801 ; nlin.SI/0112041 | DOI | MR | Zbl