@article{SIGMA_2010_6_a11,
author = {Orlando Ragnisco and Federico Zullo},
title = {B\"acklund {Transformations} for the {Trigonometric} {Gaudin} {Magnet}},
journal = {Symmetry, integrability and geometry: methods and applications},
year = {2010},
volume = {6},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SIGMA_2010_6_a11/}
}
Orlando Ragnisco; Federico Zullo. Bäcklund Transformations for the Trigonometric Gaudin Magnet. Symmetry, integrability and geometry: methods and applications, Tome 6 (2010). http://geodesic.mathdoc.fr/item/SIGMA_2010_6_a11/
[1] Bianchi L., “Ricerche sulle superficie elicoidali e sulle superficie a curvatura costante”, Ann. Sc. Norm. Super. Pisa Cl. Sci. (1), 2 (1879), 285–341 | MR
[2] Bäcklund A. V., “Einiges über Curven- und Flächen-Transformationen”, Lunds Univ. Årsskr., 10 (1874), 1–12
[3] Rogers C., “Bäcklund transformations in soliton theory”, Soliton Theory: a Survey of Results, Nonlinear Sci. Theory Appl., ed. A. Fordy, Manchester Univ. Press, Manchester, 1990, 97–130 ; Rogers C., Shadwick W. F., Bäcklund transformations and their applications, Mathematics in Science and Engineering, 161, Academic Press, New York – London, 1982 | MR | MR | Zbl
[4] Matveev V. B., Salle M. A., Darboux transformations and solitons, Springer Series in Nonlinear Dynamics, Springer, Berlin, 1991 | MR
[5] Adler M., “On the Bäcklund transformation for the Gel'fand–Dickey equations”, Comm. Math. Phys., 80 (1981), 517–527 | DOI | MR | Zbl
[6] Levi D., “Nonlinear differential difference equations as Bäcklund transformations”, J. Phys. A: Math. Gen., 14 (1981), 1083–1098 ; Levi D., “On a new Darboux transformation for the construction of exact solutions of the Schrödinger equation”, Inverse Problems, 4 (1988), 165–172 | DOI | MR | Zbl | DOI | MR | Zbl
[7] Veselov A. P., “What is an integrable mapping?”, What is Integrability?, Springer Series in Nonlinear Dynamics, ed. V. E. Zakharov, Springer, Berlin, 1991, 251–272 | MR | Zbl
[8] Suris Yu. B., The problem of integrable discretization: Hamiltonian approach, Progress in Mathematics, 219, Birkhäuser, Basel, 2003 | MR | Zbl
[9] Sklyanin E. K., “Separation of variables. New trends”, Quantum Field Theory, Integrable Models and Beyond (Kyoto, 1994), Prog. Theor. Phys. Suppl., 118, 1995, 35–60 ; solv-int/9504001 | MR | Zbl
[10] Kuznetsov V. B., Sklyanin E. K., “On Bäcklund transformations for many-body systems”, J. Phys. A: Math. Gen., 31 (1998), 2241–2251 ; solv-int/9711010 | DOI | MR | Zbl
[11] Kuznetsov V. B., Vanhaecke P., “Bäcklund transformations for finite-dimensional integrable systems: a geometric approach”, J. Geom. Phys., 44 (2002), 1–40 ; nlin.SI/0004003 | DOI | MR | Zbl
[12] Hone A. N. W., Kuznetsov V. B., Ragnisco O., “Bäcklund transformations for the $sl(2)$ Gaudin magnet”, J. Phys. A: Math. Gen., 34 (2001), 2477–2490 ; nlin.SI/0007041 | DOI | MR | Zbl
[13] Hikami K., “Separation of variables in the BC-type Gaudin magnet”, J. Phys. A: Math. Gen., 28 (1995), 4053–4061 | DOI | MR | Zbl