Bäcklund Transformations for the Trigonometric Gaudin Magnet
Symmetry, integrability and geometry: methods and applications, Tome 6 (2010) Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We construct a Bäcklund transformation for the trigonometric classical Gaudin magnet starting from the Lax representation of the model. The Darboux dressing matrix obtained depends just on one set of variables because of the so-called spectrality property introduced by E. Sklyanin and V. Kuznetsov. In the end we mention some possibly interesting open problems.
Keywords: Bäcklund transformations; integrable maps; Gaudin systems.
@article{SIGMA_2010_6_a11,
     author = {Orlando Ragnisco and Federico Zullo},
     title = {B\"acklund {Transformations} for the {Trigonometric} {Gaudin} {Magnet}},
     journal = {Symmetry, integrability and geometry: methods and applications},
     year = {2010},
     volume = {6},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SIGMA_2010_6_a11/}
}
TY  - JOUR
AU  - Orlando Ragnisco
AU  - Federico Zullo
TI  - Bäcklund Transformations for the Trigonometric Gaudin Magnet
JO  - Symmetry, integrability and geometry: methods and applications
PY  - 2010
VL  - 6
UR  - http://geodesic.mathdoc.fr/item/SIGMA_2010_6_a11/
LA  - en
ID  - SIGMA_2010_6_a11
ER  - 
%0 Journal Article
%A Orlando Ragnisco
%A Federico Zullo
%T Bäcklund Transformations for the Trigonometric Gaudin Magnet
%J Symmetry, integrability and geometry: methods and applications
%D 2010
%V 6
%U http://geodesic.mathdoc.fr/item/SIGMA_2010_6_a11/
%G en
%F SIGMA_2010_6_a11
Orlando Ragnisco; Federico Zullo. Bäcklund Transformations for the Trigonometric Gaudin Magnet. Symmetry, integrability and geometry: methods and applications, Tome 6 (2010). http://geodesic.mathdoc.fr/item/SIGMA_2010_6_a11/

[1] Bianchi L., “Ricerche sulle superficie elicoidali e sulle superficie a curvatura costante”, Ann. Sc. Norm. Super. Pisa Cl. Sci. (1), 2 (1879), 285–341 | MR

[2] Bäcklund A. V., “Einiges über Curven- und Flächen-Transformationen”, Lunds Univ. Årsskr., 10 (1874), 1–12

[3] Rogers C., “Bäcklund transformations in soliton theory”, Soliton Theory: a Survey of Results, Nonlinear Sci. Theory Appl., ed. A. Fordy, Manchester Univ. Press, Manchester, 1990, 97–130 ; Rogers C., Shadwick W. F., Bäcklund transformations and their applications, Mathematics in Science and Engineering, 161, Academic Press, New York – London, 1982 | MR | MR | Zbl

[4] Matveev V. B., Salle M. A., Darboux transformations and solitons, Springer Series in Nonlinear Dynamics, Springer, Berlin, 1991 | MR

[5] Adler M., “On the Bäcklund transformation for the Gel'fand–Dickey equations”, Comm. Math. Phys., 80 (1981), 517–527 | DOI | MR | Zbl

[6] Levi D., “Nonlinear differential difference equations as Bäcklund transformations”, J. Phys. A: Math. Gen., 14 (1981), 1083–1098 ; Levi D., “On a new Darboux transformation for the construction of exact solutions of the Schrödinger equation”, Inverse Problems, 4 (1988), 165–172 | DOI | MR | Zbl | DOI | MR | Zbl

[7] Veselov A. P., “What is an integrable mapping?”, What is Integrability?, Springer Series in Nonlinear Dynamics, ed. V. E. Zakharov, Springer, Berlin, 1991, 251–272 | MR | Zbl

[8] Suris Yu. B., The problem of integrable discretization: Hamiltonian approach, Progress in Mathematics, 219, Birkhäuser, Basel, 2003 | MR | Zbl

[9] Sklyanin E. K., “Separation of variables. New trends”, Quantum Field Theory, Integrable Models and Beyond (Kyoto, 1994), Prog. Theor. Phys. Suppl., 118, 1995, 35–60 ; solv-int/9504001 | MR | Zbl

[10] Kuznetsov V. B., Sklyanin E. K., “On Bäcklund transformations for many-body systems”, J. Phys. A: Math. Gen., 31 (1998), 2241–2251 ; solv-int/9711010 | DOI | MR | Zbl

[11] Kuznetsov V. B., Vanhaecke P., “Bäcklund transformations for finite-dimensional integrable systems: a geometric approach”, J. Geom. Phys., 44 (2002), 1–40 ; nlin.SI/0004003 | DOI | MR | Zbl

[12] Hone A. N. W., Kuznetsov V. B., Ragnisco O., “Bäcklund transformations for the $sl(2)$ Gaudin magnet”, J. Phys. A: Math. Gen., 34 (2001), 2477–2490 ; nlin.SI/0007041 | DOI | MR | Zbl

[13] Hikami K., “Separation of variables in the BC-type Gaudin magnet”, J. Phys. A: Math. Gen., 28 (1995), 4053–4061 | DOI | MR | Zbl