@article{SIGMA_2010_6_a10,
author = {Jean-Pierre Gazeau and Petr Siegl and Ahmed Youssef},
title = {Krein {Spaces} in de {Sitter} {Quantum} {Theories}},
journal = {Symmetry, integrability and geometry: methods and applications},
year = {2010},
volume = {6},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SIGMA_2010_6_a10/}
}
Jean-Pierre Gazeau; Petr Siegl; Ahmed Youssef. Krein Spaces in de Sitter Quantum Theories. Symmetry, integrability and geometry: methods and applications, Tome 6 (2010). http://geodesic.mathdoc.fr/item/SIGMA_2010_6_a10/
[1] Allen B., “Vacuum states in de Sitter space”, Phys. Rev. D, 32 (1985), 3136–3149 | DOI | MR
[2] Allen B., Folacci A., “Massless minimally coupled scalar field in de Sitter space”, Phys. Rev. D, 35 (1987), 3771–3778 | DOI | MR
[3] Bros J., Gazeau J.-P., Moschella U., “Quantum field theory in the de Sitter universe”, Phys. Rev. Lett., 73 (1994), 1746–1749 | DOI | MR | Zbl
[4] Bros J., Epstein H., Moschella U., “Analyticity properties and thermal effects for general quantum field theory on de Sitter space-time”, Comm. Math. Phys., 196 (1998), 535–570 ; gr-qc/9801099 | DOI | MR | Zbl
[5] Bros J., Moschella U., “Two-point functions and quantum fields in de Sitter universe”, Rev. Math. Phys., 8 (1996), 327–391 ; gr-qc/9511019 | DOI | MR | Zbl
[6] Brunetti R., Guido D., Longo R., “Modular localization and Wigner particles”, Rev. Math. Phys., 14 (2002), 759–785 ; math-ph/0203021 | DOI | MR | Zbl
[7] Caldwell R., Kamionkowski M., “The physics of cosmic acceleration”, Ann. Rev. Nucl. Part. Sci., 59 (2009), 397–429 ; arXiv:0903.0866 | DOI
[8] Chernikov N. A., Tagirov E. A., “Quantum theory of scalar fields in de Sitter space-time”, Ann. Inst. H. Poincaré Sect. A (N.S.), 9 (1968), 109–141 | MR | Zbl
[9] De Bièvre S., Renaud J., “The massless quantum field on the 1+1-dimensional de Sitter space”, Phys. Rev. D, 57 (1998), 6230–6241 | DOI | MR
[10] Dixmier J., “Représentations intégrables du groupe de De Sitter”, Bull. Soc. Math. France, 89 (1961), 9–41 | MR | Zbl
[11] Fulling S. A., Aspects of quantum field theory in curved spacetime, London Mathematical Society Student Texts, 17, Cambridge University Press, Cambridge, 1989 | MR | Zbl
[12] Garidi T., Huguet E., Renaud J., “de Sitter waves and the zero curvature limit”, Phys. Rev. D, 67 (2003), 124028, 5 pp., ages ; gr-qc/0304031 | DOI | MR
[13] Gazeau J.-P., “An introduction to quantum field theory in de Sitter space-time”, Cosmology and Gravitation: XIIth Brazilian School of Cosmology and Gravitation, AIP Conf. Proc., 910, Amer. Inst. Phys., Melville, NY, 2007, 218–269 | MR | Zbl
[14] Gazeau J.-P., Novello M., “The question of mass in (anti-) de Sitter spacetimes”, J. Phys. A: Math. Theor., 41 (2008), 304008, 14 pp., ages | DOI | MR | Zbl
[15] Gazeau J.-P., Renaud J., Takook M. V., “Gupta–Bleuler quantization for minimally coupled scalar fields in de Sitter space”, Classical Quantum Gravity, 17 (2000), 1415–1434 ; gr-qc/9904023 | DOI | MR | Zbl
[16] Gazeau J.-P., Youssef A., “A discrete nonetheless remarkable brick in de Sitter: the “massless minimally coupled field””, Proceedings of the XXVII$^{\rm th}$ International Colloquium on Group Theoretical Methods in Physics (Yerevan, 2008) (to appear) , Phys. Atomic Nuclei
[17] Hua L. K., Harmonic analysis of functions of several complex variables in the classical domains, American Mathematical Society, Providence, R.I., 1963 | MR | Zbl
[18] Isham C. J., “Quantum field theory in curved space-times, a general mathematical framework”, Differential Geometrical Methods in Mathematical Physics II (Proc. Conf., Univ. Bonn, Bonn, 1977), Lecture Notes in Math., 676, eds. K. Bleuler et al., Springer, Berlin, 1978, 459–512 | MR
[19] Jakobczyk L., Strocchi F., “Krein structures for Wightman and Schwinger functions”, J. Math. Phys., 29 (1988), 1231–1235 | DOI | MR | Zbl
[20] Kirsten K., Garriga J., “Massless minimally coupled fields in de Sitter space: $O(4)$-symmetric states versus de Sitter-invariant vacuum”, Phys. Rev. D, 48 (1993), 567–577 ; gr-qc/9305013 | DOI | MR
[21] Linder E. V., “Resource letter DEAU-1: dark energy and the accelerating universe”, Amer. J. Phys., 76 (2008), 197–204 ; arXiv:0705.4102 | DOI
[22] Magnus W., Oberhettinger F., Soni R. P., Formulas and theorems for the special functions of mathematical physics, Springer-Verlag, New York, 1966 | MR
[23] Mickelsson J., Niederle J., “Contractions of representations of de Sitter groups”, Comm. Math. Phys., 27 (1972), 167–180 | DOI | MR | Zbl
[24] Morchio G., Pierotti D., Strocchi F., “Infrared and vacuum structure in two-dimensional local quantum field theory models. The massless scalar field”, J. Math. Phys., 31 (1990), 1467–1477 | DOI | MR | Zbl
[25] Newton T. D., “A note on the representations of the de Sitter group”, Ann. of Math. (2), 51 (1950), 730–733 | DOI | MR | Zbl
[26] Newton T. D., Wigner E. P., “Localized states for elementary systems”, Rev. Modern Phys., 21 (1949), 400–406 | DOI | Zbl
[27] Pinczon G., Simon J., “Extensions of representations and cohomology”, Rep. Math. Phys., 16 (1979), 49–77 | DOI | MR | Zbl
[28] Schmidt H. J., “On the de Sitter space-time – the geometric foundation of inflationary cosmology”, Fortschr. Phys., 41:3 (1993), 179–199 | MR
[29] Takahashi B., “Sur les représentations unitaires des groupes de Lorentz généralisés”, Bull. Soc. Math. France, 91 (1963), 289–433 | MR | Zbl
[30] Thomas L. H., “On unitary representations of the group of de Sitter space”, Ann. of Math. (2), 42 (1941), 113–126 | DOI | MR
[31] Wald R. M., Quantum fields theory in curved spacetime and black hole thermodynamics Chicago Lectures in Physics, University of Chicago Press, Chicago, IL, 1994 | MR