@article{SIGMA_2010_6_a1,
author = {Jo{\l}anta Golenia and Maxim V. Pavlov and Ziemowit Popowicz and Anatoliy K. Prykarpatsky},
title = {On {a~Nonlocal} {Ostrovsky{\textendash}Whitham} {Type} {Dynamical} {System,} {Its} {Riemann} {Type} {Inhomogeneous} {Regularizations} and {Their} {Integrability}},
journal = {Symmetry, integrability and geometry: methods and applications},
year = {2010},
volume = {6},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SIGMA_2010_6_a1/}
}
TY - JOUR AU - Jołanta Golenia AU - Maxim V. Pavlov AU - Ziemowit Popowicz AU - Anatoliy K. Prykarpatsky TI - On a Nonlocal Ostrovsky–Whitham Type Dynamical System, Its Riemann Type Inhomogeneous Regularizations and Their Integrability JO - Symmetry, integrability and geometry: methods and applications PY - 2010 VL - 6 UR - http://geodesic.mathdoc.fr/item/SIGMA_2010_6_a1/ LA - en ID - SIGMA_2010_6_a1 ER -
%0 Journal Article %A Jołanta Golenia %A Maxim V. Pavlov %A Ziemowit Popowicz %A Anatoliy K. Prykarpatsky %T On a Nonlocal Ostrovsky–Whitham Type Dynamical System, Its Riemann Type Inhomogeneous Regularizations and Their Integrability %J Symmetry, integrability and geometry: methods and applications %D 2010 %V 6 %U http://geodesic.mathdoc.fr/item/SIGMA_2010_6_a1/ %G en %F SIGMA_2010_6_a1
Jołanta Golenia; Maxim V. Pavlov; Ziemowit Popowicz; Anatoliy K. Prykarpatsky. On a Nonlocal Ostrovsky–Whitham Type Dynamical System, Its Riemann Type Inhomogeneous Regularizations and Their Integrability. Symmetry, integrability and geometry: methods and applications, Tome 6 (2010). http://geodesic.mathdoc.fr/item/SIGMA_2010_6_a1/
[1] Błaszak M., Multi-Hamiltonian theory of dynamical systems, Texts and Monographs in Physics, Springer-Verlag, Berlin, 1998 | MR
[2] Bogolyubov N. N. Jr., Prykarpatsky A. K., Gucwa I., Golenia J., Analytical properties of an Ostrovsky–Whitham type dynamical system for a relaxing medium with spatial memory and its integrable regularization, Preprint IC/2007/109, Trieste, Italy, 2007; arXiv:0902.4395
[3] Bogolyubov N. N. Jr., Golenia J., Popowicz Z., Pavlov M. V., Prykarpatsky A. K., A new Riemann type hydrodynamical hierarchy and its integrability analysis, Preprint IC/2009/095, Trieste, Italy, 2009 | Zbl
[4] Brunelli J. C., Das A., “On an integrable hierarchy derived from the isentropic gas dynamics”, J. Math. Phys., 45 (2004), 2633–2645 ; nlin.SI/0401009 | DOI | MR | Zbl
[5] Chorin A. J., Marsden J. E., A mathematical introduction to fluid mechanics, 3rd ed., Texts in Applied Mathematics, 4, Springer-Verlag, New York, 1993 | MR | Zbl
[6] Davidson R. C., Methods in nonlinear plasma theory, Academic Press, New York, 1972
[7] Faddeev L. D., Takhtajian L. A., Hamiltonian methods in the theory of solitons, Classics in Mathematics, Springer, Berlin, 2007 | MR | Zbl
[8] Fuchssteiner B., Fokas A. S., “Symplectic structures, their Bäcklund transformations and hereditary symmetries”, Phys. D, 4 (1981), 47–66 | DOI | MR
[9] Gurevich A. V., Zybin K. P., “Nondissipative gravitational turbulence”, Soviet Phys. JETP, 67 (1988), 1–12 | MR
[10] Gurevich A. V., Zybin K. P., “Large-scale structure of the Universe. Analytic theory”, Soviet Phys. Usp., 38 (1995), 687–722
[11] Hentosh O., Prytula M., Prykarpatsky A., Differential-geometric and Lie-algebraic foundations of investigating nonlinear dynamical systems on functional manifolds, 2nd ed., Lviv University Publ., 2006 (in Ukrainian)
[12] Hunter J. K., Saxton R., “Dynamics of director fields”, SIAM J. Appl. Math., 51 (1991), 1498–1521 | DOI | MR | Zbl
[13] Hunter J. K., Zheng Y. X., “On a completely integrable nonlinear hyperbolic variational equation”, Phys. D, 79 (1994), 361–386 | MR | Zbl
[14] Lenells J., “The Hunter–Saxton equation: a geometric approach”, SIAM J. Math. Anal., 40 (2008), 266–277 | DOI | MR | Zbl
[15] Magri F., “A simple model of the integrable Hamiltonian equations”, J. Math. Phys., 19 (1978), 1156–1162 | DOI | MR | Zbl
[16] Mitropol'skij Yu. A., Bogolyubov N. N. Jr., Prikarpatskij A. K., Samojlenko V. G., Integrable dynamical systems: spectral and differential-geometric aspects, Naukova Dumka, Kiev, 1987 (in Russian) | MR
[17] Morrison A. J., Parkes E. J., Vakhnenko V. O., “The $N$ loop soliton solution of the Vakhnenko equation”, Nonlinearity, 12 (1999), 1427–1437 | DOI | MR | Zbl
[18] Olver P. J., Applications of Lie groups to differential equations, Graduate Texts in Mathematics, 107, Springer-Verlag, New York, 1986 | MR | Zbl
[19] Olver P. J., Rosenau P., “Tri-Hamiltonian duality between solitons and solitary-wave solutions having compact support”, Phys. Rev. E, 53 (1996), 1900–1906 | DOI | MR
[20] Ostrovsky L. A., “Nonlinear internal waves in a rotating ocean”, Oceanology, 18 (1978), 119–125
[21] Parkes E. J., “The stability of solution of Vakhnenko's equation”, J. Phys. A: Math. Gen., 26 (1993), 6469–6475 | DOI | MR | Zbl
[22] Parkes E. J., Vakhnenko V. O., “Explicit solutions of the Camassa–Holm equation”, Chaos Solitons Fractals, 26 (2005), 1309–1316 | DOI | MR | Zbl
[23] Pavlov M. V., “The Gurevich–Zybin system”, J. Phys. A: Math. Gen., 38 (2005), 3823–3840 ; nlin.SI/0412072 | DOI | MR
[24] Prykarpatsky A. K., Mykytyuk I. V., Algebraic integrability of nonlinear dynamical systems on manifolds. Classical and quantum aspects, Mathematics and its Applications, 443, Kluwer Academic Publishers Group, Dordrecht, 1998 | MR | Zbl
[25] Prykarpatsky A. K., Prytula M. M., “The gradient-holonomic integrability analysis of a Whitham-type nonlinear dynamical model for a relaxing medium with spatial memory”, Nonlinearity, 19 (2006), 2115–2122 | DOI | MR | Zbl
[26] Prykarpatsky A. K., Prytula M. M., “The gradient-holonomic analysis of the integrability of a nonlinear Whitham-type model for a relaxing medium with memory,”, Dopov. Nats. Akad. Nauk Ukr. Mat. Prirodozn. Tekh. Nauki, 5 (2006), 13–18 (in Ukrainian) | MR
[27] Sakovich S., “On a Whitham-type equation”, SIGMA, 5 (2009), 101, 7 pp., ages ; arXiv:0909.4455 | MR
[28] Whitham G. B., Linear and nonlinear waves, Wiley-Interscience, New York – London – Sydney, 1974 | MR | Zbl