Archimedean Atomic Lattice Effect Algebras with Complete Lattice of Sharp Elements
Symmetry, integrability and geometry: methods and applications, Tome 6 (2010) Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We study Archimedean atomic lattice effect algebras whose set of sharp elements is a complete lattice. We show properties of centers, compatibility centers and central atoms of such lattice effect algebras. Moreover, we prove that if such effect algebra $E$ is separable and modular then there exists a faithful state on $E$. Further, if an atomic lattice effect algebra is densely embeddable into a complete lattice effect algebra $\widehat{E}$ and the compatiblity center of $E$ is not a Boolean algebra then there exists an $(o)$-continuous subadditive state on $E$.
Keywords: effect algebra; state; sharp element; center; compatibility center.
@article{SIGMA_2010_6_a0,
     author = {Zdenka Rie\v{c}anov\'a},
     title = {Archimedean {Atomic} {Lattice} {Effect} {Algebras} with {Complete} {Lattice} of {Sharp} {Elements}},
     journal = {Symmetry, integrability and geometry: methods and applications},
     year = {2010},
     volume = {6},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SIGMA_2010_6_a0/}
}
TY  - JOUR
AU  - Zdenka Riečanová
TI  - Archimedean Atomic Lattice Effect Algebras with Complete Lattice of Sharp Elements
JO  - Symmetry, integrability and geometry: methods and applications
PY  - 2010
VL  - 6
UR  - http://geodesic.mathdoc.fr/item/SIGMA_2010_6_a0/
LA  - en
ID  - SIGMA_2010_6_a0
ER  - 
%0 Journal Article
%A Zdenka Riečanová
%T Archimedean Atomic Lattice Effect Algebras with Complete Lattice of Sharp Elements
%J Symmetry, integrability and geometry: methods and applications
%D 2010
%V 6
%U http://geodesic.mathdoc.fr/item/SIGMA_2010_6_a0/
%G en
%F SIGMA_2010_6_a0
Zdenka Riečanová. Archimedean Atomic Lattice Effect Algebras with Complete Lattice of Sharp Elements. Symmetry, integrability and geometry: methods and applications, Tome 6 (2010). http://geodesic.mathdoc.fr/item/SIGMA_2010_6_a0/

[1] Boole G., An investigation of the laws of thought, Macmillan, Cambridge, 1854; reprinted by Dover Press, New York, 1967

[2] Busch P., Lahti P. J., Mittelstaedt P., The quantum theory of measurement, Lecture Notes in Physics, New Series: Monographs, 2, Springer-Verlag, Berlin, 1991 | MR

[3] Dvurečenskij A., Pulmannová S., New trends in quantum structures, Mathematics and its Applications, 516, Kluwer Academic Publishers, Ister Science, Dordrecht–Bratislava, 2000 | MR | Zbl

[4] Foulis D. J., Bennett M. K., “Effect algebras and unsharp quantum logics”, Found. Phys., 24 (1994), 1331–1352 | DOI | MR

[5] Foulis D. J., “Effects, observables, states, and symmetries in physics”, Found. Phys., 37 (2007), 1421–1446 | DOI | MR | Zbl

[6] Greechie R. J., “Orthomodular lattices admitting no states”, J. Combinatorial Theory Ser. A, 10 (1971), 119–132 | DOI | MR | Zbl

[7] Greechie R. J., Foulis D. J., Pulmannová S., “The center of an effect algebra”, Order, 12 (1995), 91–106 | DOI | MR | Zbl

[8] Gudder S. P., “Sharply dominating effect algebras”, Tatra Mt. Math. Publ., 15 (1998), 23–30 | MR | Zbl

[9] Gudder S. P., “$S$-dominating effect algebras”, Internat. J. Theoret. Phys., 37 (1998), 915–923 | DOI | MR | Zbl

[10] Jenča G., Pulmannová S., “Orthocomplete effect algebras”, Proc. Amer. Math. Soc., 131 (2003), 2663–2671 | DOI | MR | Zbl

[11] Jenča G., Riečanová Z., “On sharp elements in lattice ordered effect algebras”, BUSEFAL, 80 (1999), 24–29

[12] Kalina M., On central atoms of Archimedean atomic lattice effect algebras, submitted

[13] Kôpka F., Chovanec F., “Boolean $D$-posets”, Internat. J. Theoret. Phys., 34 (1995), 1297–1302 | DOI | MR

[14] Ludwig G., Die Grundlagen der Quantenmechanik, Springer-Verlag, Berlin, 1954 ; translated C. A. Hein, Springer-Verlag, Berlin, 1983 | MR | MR

[15] Mosná K., “Atomic lattice effect algebras and their sub-lattice effect algebras”, J. Electrical Engineering, 58:7/S (2007), 3–6

[16] Paseka J., Riečanová Z., “The inheritance of BDE-property in sharply dominating lattice effect algebras and $(o)$-continuous states”, Soft Comput. (to appear)

[17] Riečanová Z., “Subalgebras, intervals and central elements of generalized effect algebras”, Internat. J. Theoret. Phys., 38 (1999), 3209–3220 | DOI | MR | Zbl

[18] Riečanová Z., “MacNeille completions of $D$-posets and effect algebras”, Internat. J. Theoret. Phys., 39 (2000), 859–869 | DOI | MR | Zbl

[19] Riečanová Z., “Archimedean and block-finite lattice effect algebras”, Demonstratio Math., 33 (2000), 443–452 | MR | Zbl

[20] Riečanová Z., “Generalization of blocks for $D$-lattices and lattice-ordered effect algebras”, Internat. J. Theoret. Phys., 39 (2000), 231–237 | DOI | MR | Zbl

[21] Riečanová Z., “Orthogonal sets in effect algebras”, Demonstratio Math., 34 (2001), 525–532 | MR | Zbl

[22] Riečanová Z., “Proper effect algebras admitting no states”, Internat. J. Theoret. Phys., 40 (2001), 1683–1691 | DOI | MR | Zbl

[23] Riečanová Z., “Lattice effect algebras with $(o)$-continuous faithful valuations”, Fuzzy Sets and Systems, 124:3 (2001), 321–327 | DOI | MR | Zbl

[24] Riečanová Z., “Smearings of states defined on sharp elements onto effect algebras”, Internat. J. Theoret. Phys., 41 (2002), 1511–1524 | DOI | MR | Zbl

[25] Riečanová Z., “Subdirect decompositions of lattice effect algebras”, Internat. J. Theoret. Phys., 42 (2003), 1415–1433 | MR

[26] Riečanová Z., Wu J., “States on sharply dominating effect algebras”, Sci. China Ser. A, 51 (2008), 907–914 | DOI | MR | Zbl

[27] Sarymsakov T. A., Ayupov Sh. A., Khadzhiev Dzh., Chilin V. I., Ordered algebras, FAN, Tashkent, 1983 (in Russian) | MR | Zbl

[28] Schmidt J., “Zur Kennzeichnung der Dedekind–MacNeilleschen Hülle einer geordneten Hülle”, Arch. Math. (Basel), 7 (1956), 241–249 | MR | Zbl