@article{SIGMA_2009_5_a98,
author = {Brian Lee},
title = {Geometric {Structures} on {Spaces} of {Weighted} {Submanifolds}},
journal = {Symmetry, integrability and geometry: methods and applications},
year = {2009},
volume = {5},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SIGMA_2009_5_a98/}
}
Brian Lee. Geometric Structures on Spaces of Weighted Submanifolds. Symmetry, integrability and geometry: methods and applications, Tome 5 (2009). http://geodesic.mathdoc.fr/item/SIGMA_2009_5_a98/
[1] Binz E., Fischer H. R., “The manifold of embeddings of a closed manifold”, Differential Geometric Methods in Mathematical Physics, Proc. Internat. Conf. (Tech. Univ. Clausthal, Clausthal-Zellerfeld, 1978), Lecture Notes in Phys., 139, ed. H. D. Doebner, Springer, Berlin – New York, 1981, 310–329 | MR
[2] Cushman R., Sniatycki J., “Differential structure of orbit spaces”, Canad. J. Math., 53 (2001), 715–755 | MR
[3] Donaldson S., “Moment maps and diffeomorphisms”, Asian J. Math., 3 (1999), 1–15 | MR | Zbl
[4] Donaldson S., “Scalar curvature and projective embeddings. I”, J. Differential Geom., 59 (2001), 479–522 | MR | Zbl
[5] Ebin D., “The manifold of Riemannian metrics”, Global Analysis, Proceedings of Symposia in Pure Mathematics (1968, Berkeley), American Mathematical Society, Providence, RI, 1970, 11–40 | MR
[6] Frölicher A., Kriegl A., Linear spaces and differentiation theory, Pure and Applied Mathematics, John Wiley Sons, Chichester, 1988 | MR
[7] Hamilton R. S., “The inverse function theorem of Nash and Moser”, Bull. Amer. Math. Soc. (N.S.), 7 (1982), 65–222 | DOI | MR | Zbl
[8] Khesin B., Lee P., “Poisson geometry and first integrals of geostrophic equations”, Phys. D, 237 (2008), 2072–2077 ; arXiv:0802.4439 | DOI | MR | Zbl
[9] Kriegl A., Michor P. W., The convenient setting of global analysis, Mathematical Surveys and Monographs, 53, American Mathematical Society, Providence, RI, 1997 | MR | Zbl
[10] Moser J., “On the volume elements on a manifold”, Trans. Amer. Math. Soc., 120 (1965), 280–296 | DOI | MR
[11] Ortega J. P., Ratiu T. S., “The optimal momentum map”, Geometry, Mechanics, and Dynamics, Springer, New York, 2002, 329–362 | MR | Zbl
[12] Polterovich L., The geometry of the group of symplectic diffeomorphisms, Lectures in Mathematics ETH Zürich, Birkhäuser Verlag, Basel, 2001 | MR | Zbl
[13] Sikorski R., Introduction to differential geometry, Biblioteka Matematyczna, 42, PWN, Warsaw, 1972 (in Polish) | MR
[14] Siberian Math. J., 35 (1994), 396–402 | DOI | MR | Zbl
[15] Souriau J. M., “Groupes différentiels”, Differential Geometrical Methods in Mathematical Physics (Proc. Conf., Aix-en-Provence/Salamanca, 1979), Lecture Notes in Math., 836, Springer, Berlin – New York, 1980, 91–128 | MR
[16] Stefan P., “Accessibility and foliations with singularities”, Bull. Amer. Math. Soc., 80 (1974), 1142–1145 | DOI | MR | Zbl
[17] Stefan P., “Accessible sets, orbits, and foliations with singularities”, Proc. London Math. Soc. (3), 29 (1974), 699–713 | DOI | MR | Zbl
[18] Sussmann H. J., “Orbits of families of vector fields and integrability of systems with singularities”, Bull. Amer. Math. Soc., 79 (1973), 197–199 | DOI | MR | Zbl
[19] Sussmann H. J., “Orbits of families of vector fields and integrability of distributions”, Trans. Amer. Math. Soc., 180 (1973), 171–188 | DOI | MR | Zbl
[20] Warner F. W., Foundations of differentiable manifolds and Lie groups, Graduate Texts in Mathematics, 94, Springer-Verlag, New York – Berlin, 1983 | MR | Zbl
[21] Weinstein A., “Symplectic manifolds and their Lagrangian submanifolds”, Adv. Math., 6 (1971), 329–346 | DOI | MR | Zbl
[22] Weinstein A., “Neighborhood classification of isotropic embeddings”, J. Differential Geom., 16 (1981), 125–128 | MR | Zbl
[23] Weinstein A., “Connections of Berry and Hannay type for moving Lagrangian submanifolds”, Adv. Math., 82 (1990), 133–159 | DOI | MR | Zbl