Contact Geometry of Curves
Symmetry, integrability and geometry: methods and applications, Tome 5 (2009) Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Cartan's method of moving frames is briefly recalled in the context of immersed curves in the homogeneous space of a Lie group $G$. The contact geometry of curves in low dimensional equi-affine geometry is then made explicit. This delivers the complete set of invariant data which solves the $G$-equivalence problem via a straightforward procedure, and which is, in some sense a supplement to the equivariant method of Fels and Olver. Next, the contact geometry of curves in general Riemannian manifolds $(M,g)$ is described. For the special case in which the isometries of $(M,g)$ act transitively, it is shown that the contact geometry provides an explicit algorithmic construction of the differential invariants for curves in $M$. The inputs required for the construction consist only of the metric $g$ and a parametrisation of structure group $SO(n)$; the group action is not required and no integration is involved. To illustrate the algorithm we explicitly construct complete sets of differential invariants for curves in the Poincaré half-space $H^3$ and in a family of constant curvature 3-metrics. It is conjectured that similar results are possible in other Cartan geometries.
Keywords: moving frames; Goursat normal forms; curves; Riemannian manifolds.
@article{SIGMA_2009_5_a97,
     author = {Peter J. Vassiliou},
     title = {Contact {Geometry} of {Curves}},
     journal = {Symmetry, integrability and geometry: methods and applications},
     year = {2009},
     volume = {5},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SIGMA_2009_5_a97/}
}
TY  - JOUR
AU  - Peter J. Vassiliou
TI  - Contact Geometry of Curves
JO  - Symmetry, integrability and geometry: methods and applications
PY  - 2009
VL  - 5
UR  - http://geodesic.mathdoc.fr/item/SIGMA_2009_5_a97/
LA  - en
ID  - SIGMA_2009_5_a97
ER  - 
%0 Journal Article
%A Peter J. Vassiliou
%T Contact Geometry of Curves
%J Symmetry, integrability and geometry: methods and applications
%D 2009
%V 5
%U http://geodesic.mathdoc.fr/item/SIGMA_2009_5_a97/
%G en
%F SIGMA_2009_5_a97
Peter J. Vassiliou. Contact Geometry of Curves. Symmetry, integrability and geometry: methods and applications, Tome 5 (2009). http://geodesic.mathdoc.fr/item/SIGMA_2009_5_a97/

[1] Alekseev D. V., Vinogradov A. M., Lychagin V. V., Geometry, I, Encycl. Math. Sci., 28, Spinger-Verlag, Berlin, 1991

[2] Bryant R. L., Some aspects of the local and global theory of Pfaffian systems, PhD thesis, University of North Carolina, Chapel-Hill, 1979

[3] Bryant R. L., Chern S. S., Gardner R. B., Goldschmidt H. L., Griffiths P. A., Exterior differential systems, Mathematical Sciences Research Institute Publications, 18, Springer-Verlag, New York, 1991 | MR | Zbl

[4] Cartan É., La méthode du repère mobile, la théorie des groupes continus et les espaces généralisés, Hermann Cie, Paris, 1935

[5] Cartan É., La théorie des groupes finis et continus et la géométrie différentielle traitees par la méthode du repère mobile, Gautier-Villars, Paris, 1937

[6] Chern S. S., “Moving frames”, The Mathematical Heritage of Élie Cartan (Lyon, 1984), Astérique, Numero Hors Serie, 1985, 1985, 67–77 | MR | Zbl

[7] Chou K.-S., Qu C.-Z., “Integrable equations arising from motions of plane curves”, Phys. D, 162 (2002), 9–33 | DOI | MR | Zbl

[8] Favard J., Cours de géométrie différentielle locale, Gauthier-Villars, Paris, 1957 | MR | Zbl

[9] Fels M., Olver P. J., “Moving coframes. I. A practical algorithm”, Acta Appl. Math., 51 (1998), 161–213 | DOI | MR

[10] Fels M., Olver P. J., “Moving coframes. II. Regularization and theoretical foundations”, Acta Appl. Math., 55 (1999), 127–208 | DOI | MR | Zbl

[11] Green M. L., “The moving frame, differential invariants and rigidity theorems for curves in homogeneous spaces”, Duke Math. J., 45 (1978), 735–779 | DOI | MR | Zbl

[12] Griffiths P. A., “On Cartan's method of Lie groups and moving frames as applied to uniqueness and existence questions in differential geometry”, Duke Math. J., 41 (1974), 775–814 | DOI | MR | Zbl

[13] Ivey T., “Integrable geometric evolution equations for curves”, The Geometrical Study of Differential Equations (Washington, DC, 2000), Contemp. Math., 285, Amer. Math. Soc., Providence, RI, 2001, 71–84 | MR | Zbl

[14] Jensen G. R., Higher order contact of submanifolds of homogeneous spaces, Lecture Notes in Mathematics, 610, Springer-Verlag, Berlin – New York, 1977 | MR | Zbl

[15] Kogan I. A., Inductive approach to moving frames and applications in classical invariant theory, PhD Thesis, University of Minesota, 2000

[16] Mansfield E. L., A guide to the symbolic invariant calculus, Cambridge University Press, Cambridge (to appear)

[17] Mansfield E. L., van der Kamp P. E., “Evolution of curve invariants and lifting integrability”, J. Geom. Phys., 56 (2006), 1294–1325 | DOI | MR | Zbl

[18] Olver P. J., “Moving frames – in geometry, algebra, computer vision and numerical analysis”, Foundations of Computational Mathematics (Oxford, 1999), London Math. Soc. Lecture Note Ser., 284, eds. R. DeVore, A. Iserles and E. Süli, Cambridge University Press, Cambridge, 2001, 267–297 | MR | Zbl

[19] Olver P. J., “Invariant submanifold flows”, J. Phys. A: Math. Theor., 41 (2008), 344017, 22 pp., ages | DOI | MR | Zbl

[20] Shadwick W. F., Sluis W. M., “Dynamic feedback for the classical geometries”, Differential Geometry and Mathematical Physics (Vancouver, BC, 1993), Contemp. Math., 170, Amer. Math. Soc., Providence, RI, 1994, 207–213 | MR | Zbl

[21] Sharpe R., Differential geometry. Cartan's generalisation of Klein's erlangen program, Graduate Texts in Mathematics, Springer-Verlag, New York, 1997 | MR | Zbl

[22] Spivak M., A comprehensive introduction to differential geometry, Vol. 1, Publish or Perish Press, 1970

[23] Spivak M., A comprehensive introduction to differential geometry, Vol. 2, Publish or Perish Press, 1979

[24] Streltsova I. S., “$\mathbb R$-conformal invariants of curves”, Izv. Vyssh. Uchebn. Zaved. Mat., 2009, no. 5, 78–81

[25] Stormark O., Lie's structural approach to PDE systems, Encyclopedia of Mathematics and its Applications, 80, Cambridge University Press, Cambridge, 2000 | MR | Zbl

[26] Sulanke R., “On É. Cartan's method of moving frames”, Differential Geometry, Colloq. Math. Soc. Janos Bolyai, 31, Budapest, 1982, 681–704 | MR | Zbl

[27] Vassiliou P., “A constructive generalised Goursat normal form”, Differential Geom. Appl., 24 (2006), 332–350 ; math.DG/0404377 | DOI | MR | Zbl

[28] Vassiliou P., “Efficient construction of contact coordinates for partial prolongations”, Found. Comput. Math., 6 (2006), 269–308 ; math.DG/0406234 | DOI | MR | Zbl

[29] Vessiot E., “Sur l'intégration des faisceaux de transformations infinitésimales dans le cas où, le degré du faisceau étant $n$, celui du faisceau derivée est $n+1$”, Ann. Sci. École Norm. Sup. (3), 45 (1928), 189–253 | MR | Zbl

[30] Yamaguchi K., “Contact geometry of higher order”, Japan. J. Math. (N.S.), 8 (1982), 109–176 ; Yamaguchi K., “Geometrization of jet bundles”, Hokkaido Math. J., 12 (1983), 27–40 | MR | Zbl | MR | Zbl