Indefinite Affine Hyperspheres Admitting a Pointwise Symmetry. Part 2
Symmetry, integrability and geometry: methods and applications, Tome 5 (2009) Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

An affine hypersurface $M$ is said to admit a pointwise symmetry, if there exists a subgroup $G$ of $\operatorname{Aut}(T_p M)$ for all $p\in M$, which preserves (pointwise) the affine metric $h$, the difference tensor $K$ and the affine shape operator $S$. Here, we consider 3-dimensional indefinite affine hyperspheres, i.e. $S= H\operatorname{Id}$ (and thus $S$ is trivially preserved). In Part 1 we found the possible symmetry groups $G$ and gave for each $G$ a canonical form of $K$. We started a classification by showing that hyperspheres admitting a pointwise $\mathbb Z_2\times\mathbb Z_2$ resp. $\mathbb R$-symmetry are well-known, they have constant sectional curvature and Pick invariant $J0$ resp. $J=0$. Here, we continue with affine hyperspheres admitting a pointwise $\mathbb Z_3$- or $SO(2)$-symmetry. They turn out to be warped products of affine spheres ($\mathbb Z_3$) or quadrics ($SO(2)$) with a curve.
Keywords: affine hyperspheres; indefinite affine metric; pointwise symmetry; affine differential geometry; affine spheres; warped products.
@article{SIGMA_2009_5_a96,
     author = {Christine Scharlach},
     title = {Indefinite {Affine} {Hyperspheres} {Admitting} {a~Pointwise} {Symmetry.} {Part~2}},
     journal = {Symmetry, integrability and geometry: methods and applications},
     year = {2009},
     volume = {5},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SIGMA_2009_5_a96/}
}
TY  - JOUR
AU  - Christine Scharlach
TI  - Indefinite Affine Hyperspheres Admitting a Pointwise Symmetry. Part 2
JO  - Symmetry, integrability and geometry: methods and applications
PY  - 2009
VL  - 5
UR  - http://geodesic.mathdoc.fr/item/SIGMA_2009_5_a96/
LA  - en
ID  - SIGMA_2009_5_a96
ER  - 
%0 Journal Article
%A Christine Scharlach
%T Indefinite Affine Hyperspheres Admitting a Pointwise Symmetry. Part 2
%J Symmetry, integrability and geometry: methods and applications
%D 2009
%V 5
%U http://geodesic.mathdoc.fr/item/SIGMA_2009_5_a96/
%G en
%F SIGMA_2009_5_a96
Christine Scharlach. Indefinite Affine Hyperspheres Admitting a Pointwise Symmetry. Part 2. Symmetry, integrability and geometry: methods and applications, Tome 5 (2009). http://geodesic.mathdoc.fr/item/SIGMA_2009_5_a96/

[1] Bryant R.L.,, “Second order families of special Lagrangian 3-folds”, Perspectives in Riemannian Geometry, CRM Proc. Lecture Notes, 40, Amer. Math. Soc., Providence, RI, 2006, 63–98 ; math.DG/0007128 | MR | Zbl

[2] Calabi E., “Complete affine hyperspheres. I”, Convegno di Geometria Differenziale (INDAM, Rome, 1971), Symposia Mathematica, 10, Academic Press, London, 1972, 19–38 | MR

[3] Dillen F., “Equivalence theorems in affine differential geometry”, Geom. Dedicata, 32 (1989), 81–92 | DOI | MR | Zbl

[4] Dillen F., Katsumi N., Vrancken L., “Conjugate connections and Radon's theorem in affine differential geometry”, Monatsh. Math., 109 (1990), 221–235 | DOI | MR | Zbl

[5] Dillen F., Vrancken L., “Calabi-type composition of affine spheres”, Differential Geom. Appl., 4 (1994), 303–328 | DOI | MR | Zbl

[6] Hu Z., Li H. Z., Vrancken L., “Characterizations of the Calabi product of hyperbolic affine hyperspheres”, Results Math., 52 (2008), 299–314 | DOI | MR | Zbl

[7] Li A. M., Simon U., Zhao G. S., Global affine differential geometry of hypersurfaces, de Gruyter Expositions in Mathematics, 11, Walter de Gruyter Co., Berlin, 1993 | MR | Zbl

[8] Lu Y., Scharlach C., “Affine hypersurfaces admitting a pointwise symmetry”, Results Math., 48 (2005), 275–300 ; math.DG/0510150 | MR | Zbl

[9] Nölker S., “Isometric immersions of warped products”, Differential Geom. Appl., 6 (1996), 1–30 | DOI | MR | Zbl

[10] Nomizu K., Sasaki T., Affine differential geometry. Geometry of affine immersions, Cambridge Tracts in Mathematics, 111, Cambridge University Press, Cambridge, 1994 | MR | Zbl

[11] O'Neill B., Semi-Riemannian geometry. With applications to relativity, Pure and Applied Mathematics, 103, Academic Press, Inc. [Harcourt Brace Jovanovich Publishers], New York, 1983 | MR

[12] Ponge R., Reckziegel H., “Twisted products in pseudo-Riemannian geometry”, Geom. Dedicata, 48 (1993), 15–25 | DOI | MR | Zbl

[13] Scharlach C., “Indefinite affine hyperspheres admitting a pointwise symmetry. Part 1”, Beiträge Algebra Geom., 48 (2007), 469–491 ; math.DG/0510531 | MR | Zbl

[14] Vrancken L., “Special classes of three dimensional affine hyperspheres characterized by properties of their cubic form”, Contemporary Geometry and Related Topics, World Sci. Publ., River Edge, NJ, 2004, 431–459 | MR | Zbl