@article{SIGMA_2009_5_a96,
author = {Christine Scharlach},
title = {Indefinite {Affine} {Hyperspheres} {Admitting} {a~Pointwise} {Symmetry.} {Part~2}},
journal = {Symmetry, integrability and geometry: methods and applications},
year = {2009},
volume = {5},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SIGMA_2009_5_a96/}
}
Christine Scharlach. Indefinite Affine Hyperspheres Admitting a Pointwise Symmetry. Part 2. Symmetry, integrability and geometry: methods and applications, Tome 5 (2009). http://geodesic.mathdoc.fr/item/SIGMA_2009_5_a96/
[1] Bryant R.L.,, “Second order families of special Lagrangian 3-folds”, Perspectives in Riemannian Geometry, CRM Proc. Lecture Notes, 40, Amer. Math. Soc., Providence, RI, 2006, 63–98 ; math.DG/0007128 | MR | Zbl
[2] Calabi E., “Complete affine hyperspheres. I”, Convegno di Geometria Differenziale (INDAM, Rome, 1971), Symposia Mathematica, 10, Academic Press, London, 1972, 19–38 | MR
[3] Dillen F., “Equivalence theorems in affine differential geometry”, Geom. Dedicata, 32 (1989), 81–92 | DOI | MR | Zbl
[4] Dillen F., Katsumi N., Vrancken L., “Conjugate connections and Radon's theorem in affine differential geometry”, Monatsh. Math., 109 (1990), 221–235 | DOI | MR | Zbl
[5] Dillen F., Vrancken L., “Calabi-type composition of affine spheres”, Differential Geom. Appl., 4 (1994), 303–328 | DOI | MR | Zbl
[6] Hu Z., Li H. Z., Vrancken L., “Characterizations of the Calabi product of hyperbolic affine hyperspheres”, Results Math., 52 (2008), 299–314 | DOI | MR | Zbl
[7] Li A. M., Simon U., Zhao G. S., Global affine differential geometry of hypersurfaces, de Gruyter Expositions in Mathematics, 11, Walter de Gruyter Co., Berlin, 1993 | MR | Zbl
[8] Lu Y., Scharlach C., “Affine hypersurfaces admitting a pointwise symmetry”, Results Math., 48 (2005), 275–300 ; math.DG/0510150 | MR | Zbl
[9] Nölker S., “Isometric immersions of warped products”, Differential Geom. Appl., 6 (1996), 1–30 | DOI | MR | Zbl
[10] Nomizu K., Sasaki T., Affine differential geometry. Geometry of affine immersions, Cambridge Tracts in Mathematics, 111, Cambridge University Press, Cambridge, 1994 | MR | Zbl
[11] O'Neill B., Semi-Riemannian geometry. With applications to relativity, Pure and Applied Mathematics, 103, Academic Press, Inc. [Harcourt Brace Jovanovich Publishers], New York, 1983 | MR
[12] Ponge R., Reckziegel H., “Twisted products in pseudo-Riemannian geometry”, Geom. Dedicata, 48 (1993), 15–25 | DOI | MR | Zbl
[13] Scharlach C., “Indefinite affine hyperspheres admitting a pointwise symmetry. Part 1”, Beiträge Algebra Geom., 48 (2007), 469–491 ; math.DG/0510531 | MR | Zbl
[14] Vrancken L., “Special classes of three dimensional affine hyperspheres characterized by properties of their cubic form”, Contemporary Geometry and Related Topics, World Sci. Publ., River Edge, NJ, 2004, 431–459 | MR | Zbl