The Rational qKZ Equation and Shifted Non-Symmetric Jack Polynomials
Symmetry, integrability and geometry: methods and applications, Tome 5 (2009) Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We construct special solutions to the rational quantum Knizhnik–Zamolodchikov equation associated with the Lie algebra $gl_N$. The main ingredient is a special class of the shifted non-symmetric Jack polynomials. It may be regarded as a shifted version of the singular polynomials studied by Dunkl. We prove that our solutions contain those obtained as a scaling limit of matrix elements of the vertex operators of level one.
Keywords: qKZ equation; shifted Jack polynomial; degenerate double affine Hecke algebra.
@article{SIGMA_2009_5_a9,
     author = {Saburo Kakei and Michitomo Nishizawa and Yoshihisa Saito and Yoshihiro Takeyama},
     title = {The {Rational} {qKZ} {Equation} and {Shifted} {Non-Symmetric} {Jack} {Polynomials}},
     journal = {Symmetry, integrability and geometry: methods and applications},
     year = {2009},
     volume = {5},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SIGMA_2009_5_a9/}
}
TY  - JOUR
AU  - Saburo Kakei
AU  - Michitomo Nishizawa
AU  - Yoshihisa Saito
AU  - Yoshihiro Takeyama
TI  - The Rational qKZ Equation and Shifted Non-Symmetric Jack Polynomials
JO  - Symmetry, integrability and geometry: methods and applications
PY  - 2009
VL  - 5
UR  - http://geodesic.mathdoc.fr/item/SIGMA_2009_5_a9/
LA  - en
ID  - SIGMA_2009_5_a9
ER  - 
%0 Journal Article
%A Saburo Kakei
%A Michitomo Nishizawa
%A Yoshihisa Saito
%A Yoshihiro Takeyama
%T The Rational qKZ Equation and Shifted Non-Symmetric Jack Polynomials
%J Symmetry, integrability and geometry: methods and applications
%D 2009
%V 5
%U http://geodesic.mathdoc.fr/item/SIGMA_2009_5_a9/
%G en
%F SIGMA_2009_5_a9
Saburo Kakei; Michitomo Nishizawa; Yoshihisa Saito; Yoshihiro Takeyama. The Rational qKZ Equation and Shifted Non-Symmetric Jack Polynomials. Symmetry, integrability and geometry: methods and applications, Tome 5 (2009). http://geodesic.mathdoc.fr/item/SIGMA_2009_5_a9/

[1] Cherednik I., “Nonsymmetric Macdonald polynomials”, Int. Math. Res. Not., 1995:10 (1995), 483–515 | DOI | MR | Zbl

[2] Cherednik I., “Double affine Hecke algebras, Knizhnik–Zamolodchikov equations, and Macdonald's operators”, Int. Math. Res. Not., 1992:9 (1992), 171–180 | DOI | MR | Zbl

[3] Dunkl C. F., “Singular polynomials for the symmetric groups”, Int. Math. Res. Not., 2004:67 (2004), 3607–3635 ; math.RT/0403277 | DOI | MR | Zbl

[4] Dunkl C. F., “Singular polynomials and modules for the symmetric groups”, Int. Math. Res. Not., 2005:39 (2005), 2409–2436 ; math.RT/0501494 | DOI | MR | Zbl

[5] Dunkl C. F., de Jeu M. F. E., Opdam E. M., “Singular polynomials for finite reflection groups”, Trans. Amer. Math. Soc., 346 (1994), 237–256 | DOI | MR | Zbl

[6] Di Francesco P., Zinn-Justin P., “Quantum Knizhnik–Zamolodchikov equation, generalized Razumov–Stroganov sum rules and extended Joseph polynomials”, J. Phys. A: Math. Gen., 38 (2005), L815–L822 ; math-ph/0508059 | DOI | MR | Zbl

[7] Forrester P., Log-gases and Random matrices, Princeton University Press, 2009

[8] Feigin B., Jimbo M., Miwa T., Mukhin E., “A differential ideal of symmetric polynomials spanned by Jack polynomials at $\beta=-(r-1)/(k+1)$”, Int. Math. Res. Not., 2002:23 (2002), 1223–1237 ; math.QA/0112127 | DOI | MR | Zbl

[9] Frenkel I. B., Reshetikhin N. Yu., “Quantum affine algebras and holonomic difference equations”, Comm. Math. Phys., 146 (1992), 1–60 | DOI | MR | Zbl

[10] Joseph A., “On the variety of a highest weight module”, J. Algebra, 88 (1984), 238–278 | DOI | MR | Zbl

[11] Knop F., “Symmetric and non-symmetric quantum Capelli polynomials”, Comment. Math. Helv., 72 (1997), 84–100 ; q-alg/9603028 | MR | Zbl

[12] Kasatani M., Takeyama Y., “The quantum Knizhnik–Zamolodchikov equation and non-symmetric Macdonald polynomials”, Funkcial. Ekvac., 50 (2007), 491–509 ; math.QA/0608773 | DOI | MR | Zbl

[13] Macdonald I. G., “Affine Hecke algebras and orthogonal polynomials”, Astérisque, 237, 1996, 189–207 | MR | Zbl

[14] Opdam E. M., “Harmonic analysis for certain representations of graded Hecke algebras”, Acta Math., 175 (1995), 75–121 | DOI | MR | Zbl

[15] Suzuki T., “Rational and trigonometric degeneration of the double affine Hecke algebra of type $A$”, Int. Math. Res. Not., 2005:37 (2005), 2249–2262 ; math.RT/0502534 | DOI | MR | Zbl

[16] Takeyama Y., “Form factors of $SU(N)$ invariant Thirring model”, Publ. Res. Inst. Math. Sci., 39 (2003), 59–116 ; math-ph/0112025 | DOI | MR | Zbl