Comment on “Non-Hermitian Quantum Mechanics with Minimal Length Uncertainty”
Symmetry, integrability and geometry: methods and applications, Tome 5 (2009)
Cet article a éte moissonné depuis la source Math-Net.Ru
We demonstrate that the recent paper by Jana and Roy entitled “Non-Hermitian quantum mechanics with minimal length uncertainty” [SIGMA 5 (2009), 083, 7 pages, arXiv:0908.1755] contains various misconceptions. We compare with an analysis on the same topic carried out previously in our manuscript [arXiv:0907.5354]. In particular, we show that the metric operators computed for the deformed non-Hermitian Swanson models differs in both cases and is inconsistent in the former.
Keywords:
non-Hermitian Hamiltonians; deformed canonical commutation relations; minimal length.
@article{SIGMA_2009_5_a88,
author = {Bijan Bagchi and Andreas Fring},
title = {Comment on {{\textquotedblleft}Non-Hermitian} {Quantum} {Mechanics} with {Minimal} {Length} {Uncertainty{\textquotedblright}}},
journal = {Symmetry, integrability and geometry: methods and applications},
year = {2009},
volume = {5},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SIGMA_2009_5_a88/}
}
TY - JOUR AU - Bijan Bagchi AU - Andreas Fring TI - Comment on “Non-Hermitian Quantum Mechanics with Minimal Length Uncertainty” JO - Symmetry, integrability and geometry: methods and applications PY - 2009 VL - 5 UR - http://geodesic.mathdoc.fr/item/SIGMA_2009_5_a88/ LA - en ID - SIGMA_2009_5_a88 ER -
Bijan Bagchi; Andreas Fring. Comment on “Non-Hermitian Quantum Mechanics with Minimal Length Uncertainty”. Symmetry, integrability and geometry: methods and applications, Tome 5 (2009). http://geodesic.mathdoc.fr/item/SIGMA_2009_5_a88/
[1] Bagchi B., Fring A., Minimal length in quantum mechanics and non-Hermitian Hamiltonian systems, arXiv:0907.5354 | MR
[2] Jana T. K., Roy P., “Non-Hermitian quantum mechanics with minimal length uncertainty”, SIGMA, 5 (2009), 083, 7 pp., ages ; arXiv:0908.1755 | MR