Trigonometric Solutions of WDVV Equations and Generalized Calogero–Moser–Sutherland Systems
Symmetry, integrability and geometry: methods and applications, Tome 5 (2009) Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We consider trigonometric solutions of WDVV equations and derive geometric conditions when a collection of vectors with multiplicities determines such a solution. We incorporate these conditions into the notion of trigonometric Veselov system ($\vee$-system) and we determine all trigonometric $\vee$-systems with up to five vectors. We show that generalized Calogero–Moser–Sutherland operator admits a factorized eigenfunction if and only if it corresponds to the trigonometric $\vee$-system; this inverts a one-way implication observed by Veselov for the rational solutions.
Keywords: Witten–Dijkgraaf–Verlinde–Verlinde equations, $\vee$-systems, Calogero–Moser–Sutherland systems.
@article{SIGMA_2009_5_a87,
     author = {Misha V. Feigin},
     title = {Trigonometric {Solutions} of {WDVV} {Equations} and {Generalized} {Calogero{\textendash}Moser{\textendash}Sutherland} {Systems}},
     journal = {Symmetry, integrability and geometry: methods and applications},
     year = {2009},
     volume = {5},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SIGMA_2009_5_a87/}
}
TY  - JOUR
AU  - Misha V. Feigin
TI  - Trigonometric Solutions of WDVV Equations and Generalized Calogero–Moser–Sutherland Systems
JO  - Symmetry, integrability and geometry: methods and applications
PY  - 2009
VL  - 5
UR  - http://geodesic.mathdoc.fr/item/SIGMA_2009_5_a87/
LA  - en
ID  - SIGMA_2009_5_a87
ER  - 
%0 Journal Article
%A Misha V. Feigin
%T Trigonometric Solutions of WDVV Equations and Generalized Calogero–Moser–Sutherland Systems
%J Symmetry, integrability and geometry: methods and applications
%D 2009
%V 5
%U http://geodesic.mathdoc.fr/item/SIGMA_2009_5_a87/
%G en
%F SIGMA_2009_5_a87
Misha V. Feigin. Trigonometric Solutions of WDVV Equations and Generalized Calogero–Moser–Sutherland Systems. Symmetry, integrability and geometry: methods and applications, Tome 5 (2009). http://geodesic.mathdoc.fr/item/SIGMA_2009_5_a87/

[1] Marshakov A., Mironov A., Morozov A., “WDVV-like equations in $N=2$ SUSY Yang–Mills theory”, Phys. Lett. B, 389 (1996), 43–52 ; hep-th/9607109 | DOI | MR

[2] Marshakov A., Mironov A., Morozov A., “More evidence for the WDVV equations in $N=2$ SUSY Yang–Mills theories”, Internat. J. Modern Phys. A, 15 (2000), 1157–1206 ; hep-th/9701123 | MR | Zbl

[3] Hoevenaars L. K., Martini R., “On the WDVV equations in five-dimensional gauge theories”, Phys. Lett. B, 557 (2003), 94–104 ; math-ph/0212016 | DOI | MR | Zbl

[4] Martini R., Hoevenaars L. K., “Trigonometric solutions of the WDVV equations from root systems”, Lett. Math. Phys., 65 (2003), 15–18 ; math-ph/0302059 | DOI | MR | Zbl

[5] Pavlov M., Explicit solutions of the WDVV equation determined by the “flat” hydrodynamic reductions of the Egorov hydrodynamic chains, nlin.SI/0606008

[6] Dubrovin B., “Geometry of 2D topological field theories”, Integrable Systems and Quantum Groups (Montecatini Terme, 1993), Lecture Notes in Math., 1620, Springer, Berlin, 1996, 120–348 ; hep-th/9407018 | MR | Zbl

[7] Dubrovin B., “On almost duality for Frobenius manifolds”, Geometry, Topology, and Mathematical Physics, Amer. Math. Soc. Transl. Ser. 2, 212, Amer. Math. Soc., Providence, RI, 2004, 75–132 ; math.DG/0307374 | MR | Zbl

[8] Riley A., Frobenius manifolds: caustic submanifolds and discriminant almost duality, Ph.D. Thesis, Hull University, 2007

[9] Riley A., Strachan I. A. B., “A note on the relationship between rational and trigonometric solutions of the WDVV equations”, J. Nonlinear Math. Phys., 14 (2007), 82–94 ; nlin.SI/0605005 | DOI | MR | Zbl

[10] Veselov A. P., “Deformations of the root systems and new solutions to generalised WDVV equations”, Phys. Lett. A, 261 (1999), 297–302 ; hep-th/9902142 | DOI | MR | Zbl

[11] Veselov A. P., “On generalizations of the Calogero–Moser–Sutherland quantum problem and WDVV equations”, J. Math. Phys., 43 (2002), 5675–5682 ; math-ph/0204050 | DOI | MR | Zbl

[12] Feigin M. V., Veselov A. P., “Logarithmic Frobenius structures and Coxeter discriminants”, Adv. Math., 212 (2007), 143–162 ; math-ph/0512095 | DOI | MR | Zbl

[13] Feigin M. V., Veselov A. P., “On the geometry of $\vee$-systems”, Geometry, Topology, and Mathematical Physics, Amer. Math. Soc. Transl. Ser. 2, 224, Amer. Math. Soc., Providence, RI, 2008, 111–123 ; arXiv:0710.5729 | MR | Zbl

[14] Feigin M. V., “Bispectrality for deformed Calogero–Moser–Sutherland systems”, J. Nonlinear Math. Phys., 12, suppl. 2 (2005), 95–136 ; math-ph/0503020 | DOI | MR | Zbl

[15] Braden H., Marshakov A., Mironov A., Morozov A., “Seiberg–Witten theory for a non-trivial compactification from five to four dimensions”, Phys. Lett. B, 448 (1999), 195–202 ; hep-th/9812078 | DOI | MR | Zbl

[16] Strachan I. A. B., Weyl groups and elliptic solutions of the WDVV equations, arXiv:0802.0388