@article{SIGMA_2009_5_a87,
author = {Misha V. Feigin},
title = {Trigonometric {Solutions} of {WDVV} {Equations} and {Generalized} {Calogero{\textendash}Moser{\textendash}Sutherland} {Systems}},
journal = {Symmetry, integrability and geometry: methods and applications},
year = {2009},
volume = {5},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SIGMA_2009_5_a87/}
}
TY - JOUR AU - Misha V. Feigin TI - Trigonometric Solutions of WDVV Equations and Generalized Calogero–Moser–Sutherland Systems JO - Symmetry, integrability and geometry: methods and applications PY - 2009 VL - 5 UR - http://geodesic.mathdoc.fr/item/SIGMA_2009_5_a87/ LA - en ID - SIGMA_2009_5_a87 ER -
Misha V. Feigin. Trigonometric Solutions of WDVV Equations and Generalized Calogero–Moser–Sutherland Systems. Symmetry, integrability and geometry: methods and applications, Tome 5 (2009). http://geodesic.mathdoc.fr/item/SIGMA_2009_5_a87/
[1] Marshakov A., Mironov A., Morozov A., “WDVV-like equations in $N=2$ SUSY Yang–Mills theory”, Phys. Lett. B, 389 (1996), 43–52 ; hep-th/9607109 | DOI | MR
[2] Marshakov A., Mironov A., Morozov A., “More evidence for the WDVV equations in $N=2$ SUSY Yang–Mills theories”, Internat. J. Modern Phys. A, 15 (2000), 1157–1206 ; hep-th/9701123 | MR | Zbl
[3] Hoevenaars L. K., Martini R., “On the WDVV equations in five-dimensional gauge theories”, Phys. Lett. B, 557 (2003), 94–104 ; math-ph/0212016 | DOI | MR | Zbl
[4] Martini R., Hoevenaars L. K., “Trigonometric solutions of the WDVV equations from root systems”, Lett. Math. Phys., 65 (2003), 15–18 ; math-ph/0302059 | DOI | MR | Zbl
[5] Pavlov M., Explicit solutions of the WDVV equation determined by the “flat” hydrodynamic reductions of the Egorov hydrodynamic chains, nlin.SI/0606008
[6] Dubrovin B., “Geometry of 2D topological field theories”, Integrable Systems and Quantum Groups (Montecatini Terme, 1993), Lecture Notes in Math., 1620, Springer, Berlin, 1996, 120–348 ; hep-th/9407018 | MR | Zbl
[7] Dubrovin B., “On almost duality for Frobenius manifolds”, Geometry, Topology, and Mathematical Physics, Amer. Math. Soc. Transl. Ser. 2, 212, Amer. Math. Soc., Providence, RI, 2004, 75–132 ; math.DG/0307374 | MR | Zbl
[8] Riley A., Frobenius manifolds: caustic submanifolds and discriminant almost duality, Ph.D. Thesis, Hull University, 2007
[9] Riley A., Strachan I. A. B., “A note on the relationship between rational and trigonometric solutions of the WDVV equations”, J. Nonlinear Math. Phys., 14 (2007), 82–94 ; nlin.SI/0605005 | DOI | MR | Zbl
[10] Veselov A. P., “Deformations of the root systems and new solutions to generalised WDVV equations”, Phys. Lett. A, 261 (1999), 297–302 ; hep-th/9902142 | DOI | MR | Zbl
[11] Veselov A. P., “On generalizations of the Calogero–Moser–Sutherland quantum problem and WDVV equations”, J. Math. Phys., 43 (2002), 5675–5682 ; math-ph/0204050 | DOI | MR | Zbl
[12] Feigin M. V., Veselov A. P., “Logarithmic Frobenius structures and Coxeter discriminants”, Adv. Math., 212 (2007), 143–162 ; math-ph/0512095 | DOI | MR | Zbl
[13] Feigin M. V., Veselov A. P., “On the geometry of $\vee$-systems”, Geometry, Topology, and Mathematical Physics, Amer. Math. Soc. Transl. Ser. 2, 224, Amer. Math. Soc., Providence, RI, 2008, 111–123 ; arXiv:0710.5729 | MR | Zbl
[14] Feigin M. V., “Bispectrality for deformed Calogero–Moser–Sutherland systems”, J. Nonlinear Math. Phys., 12, suppl. 2 (2005), 95–136 ; math-ph/0503020 | DOI | MR | Zbl
[15] Braden H., Marshakov A., Mironov A., Morozov A., “Seiberg–Witten theory for a non-trivial compactification from five to four dimensions”, Phys. Lett. B, 448 (1999), 195–202 ; hep-th/9812078 | DOI | MR | Zbl
[16] Strachan I. A. B., Weyl groups and elliptic solutions of the WDVV equations, arXiv:0802.0388