Variations of Hodge Structure Considered as an Exterior Differential System: Old and New Results
Symmetry, integrability and geometry: methods and applications, Tome 5 (2009) Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

This paper is a survey of the subject of variations of Hodge structure (VHS) considered as exterior differential systems (EDS). We review developments over the last twenty-six years, with an emphasis on some key examples. In the penultimate section we present some new results on the characteristic cohomology of a homogeneous Pfaffian system. In the last section we discuss how the integrability conditions of an EDS affect the expected dimension of an integral submanifold. The paper ends with some speculation on EDS and Hodge conjecture for Calabi–Yau manifolds.
Keywords: exterior differential systems; variation of Hodge structure, Noether–Lefschetz locus; period domain; integral manifold; Hodge conjecture; Pfaffian system; Chern classes; characteristic cohomology; Cartan–Kähler theorem.
@article{SIGMA_2009_5_a86,
     author = {Mark Green and James Carlson and Phillip Griffiths},
     title = {Variations of {Hodge} {Structure} {Considered} as an {Exterior} {Differential} {System:} {Old} and {New} {Results}},
     journal = {Symmetry, integrability and geometry: methods and applications},
     year = {2009},
     volume = {5},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SIGMA_2009_5_a86/}
}
TY  - JOUR
AU  - Mark Green
AU  - James Carlson
AU  - Phillip Griffiths
TI  - Variations of Hodge Structure Considered as an Exterior Differential System: Old and New Results
JO  - Symmetry, integrability and geometry: methods and applications
PY  - 2009
VL  - 5
UR  - http://geodesic.mathdoc.fr/item/SIGMA_2009_5_a86/
LA  - en
ID  - SIGMA_2009_5_a86
ER  - 
%0 Journal Article
%A Mark Green
%A James Carlson
%A Phillip Griffiths
%T Variations of Hodge Structure Considered as an Exterior Differential System: Old and New Results
%J Symmetry, integrability and geometry: methods and applications
%D 2009
%V 5
%U http://geodesic.mathdoc.fr/item/SIGMA_2009_5_a86/
%G en
%F SIGMA_2009_5_a86
Mark Green; James Carlson; Phillip Griffiths. Variations of Hodge Structure Considered as an Exterior Differential System: Old and New Results. Symmetry, integrability and geometry: methods and applications, Tome 5 (2009). http://geodesic.mathdoc.fr/item/SIGMA_2009_5_a86/

[1] Allaud E., “Nongenericity of variations of Hodge structure for hypersurfaces of high degree”, Duke Math. J., 129 (2005), 201–217 ; math.AG/0503346 | DOI | MR | Zbl

[2] Bryant R. L., Chern S. S., Gardner R. B., Goldschmidt H. L., Griffiths P. A., Exterior differential systems, Mathematical Sciences Research Institute Publications, 18, Springer-Verlag, New York, 1991 | MR | Zbl

[3] Bryant R. L., Griffiths P. A., “Some observations on the infinitesimal period relations for regular threefolds with trivial canonical bundle”, Arithmetic and Geometry, Vol. II, Progr. Math., 36, Birkhäuser Boston, Boston, MA, 1983, 77–102 | MR

[4] Bryant R. L., Griffiths P. A., “Characteristic cohomology of differential systems. I. General theory”, J. Amer. Math. Soc., 8 (1995), 507–596 | DOI | MR | Zbl

[5] Bryant R. L., Griffiths P. A., “Characteristic cohomology of differential systems. II. Conservation law for a class of parabolic equations”, Duke Math. J., 78 (1995), 531–676 | DOI | MR | Zbl

[6] Carlson J. A., “Bounds on the dimension of variations of Hodge structure”, Trans. Amer. Math. Soc., 294 (1986), 45–64 ; Erratum Trans. Amer. Math. Soc., 299 (1987), 429 | DOI | MR | Zbl | DOI | MR

[7] Carlson J. A., Donagi R., “Hypersurface variations are maximal. I”, Invent. Math., 89 (1987), 371–374 | DOI | MR | Zbl

[8] Carlson J. A., Kasparian A., Toledo D., “Variations of Hodge structure of maximal dimension”, Duke Math. J., 58 (1989), 669–694 | DOI | MR | Zbl

[9] Carlson J. A., Simpson C., “Shimura varieties of weight two Hodge structures”, Hodge Theory (Sant Cugat, 1985), Lecture Notes in Math., 1246, Springer, Berlin, 1987, 1–15 | MR

[10] Carlson J. A., Toledo D., “Generic integral manifolds for weight-two period domains”, Trans. Amer. Math. Soc., 356 (2004), 2241–2249 ; math.AG/0501078 | DOI | MR | Zbl

[11] Carlson J. A., Toledo D., “Variations of Hodge structure, Legendre submanifolds and accessibility”, Trans. Amer. Math. Soc., 311 (1989), 391–411 | DOI | MR | Zbl

[12] Carlson J. A., Müller-Stach S., Peters C., Period mappings and period domains, Cambridge Studies in Advanced Mathematics, 85, Cambridge University Press, Cambridge, 2003 | MR | Zbl

[13] Donagi R., “Generic Torelli for projective hypersurfaces”, Compositio Math., 50 (1983), 325–353 | MR | Zbl

[14] Green M., “Koszul cohomology and the geometry of projective varieties. II”, J. Differential Geom., 20 (1984), 279–289 | MR | Zbl

[15] Green M., Griffiths P., “Algebraic cycles and singularities of normal functions. II”, Inspired by S. S. Chern, Nankai Tracts Math., 11, World Sci. Publ., Hackensack, NJ, 2006, 179–268 | MR | Zbl

[16] Griffiths P., “Hermitian differential geometry and the theory of positive and ample holomorphic vector bundles”, J. Math. Mech., 14 (1965), 117–140 | MR | Zbl

[17] Ivey T. A., Landsberg J. M., Cartan for beginners: differential geometry via moving frames and exterior differential systems, Graduate Studies in Mathematics, 61, American Mathematical Society, Providence, RI, 2003 | MR | Zbl

[18] Mayer R., “Coupled contact systems and rigidity of maximal dimensional variations of Hodge structure”, Trans. Amer. Math. Soc., 352 (2000), 2121–2144 ; alg-geom/9712001 | DOI | MR | Zbl

[19] Otwinowska A., “Composantes de petite codimension du lieu de Noether–Lefschetz: un argument asymptotique en faveur de la conjecture de Hodge pour les hypersurfaces”, J. Algebraic Geom., 12 (2003), 307–320 | MR | Zbl

[20] Otwinowska A., “Composantes de dimension maximale d'un analogue du lieu de Noether–Lefschetz”, Compositio Math., 131 (2002), 31–50 | DOI | MR | Zbl

[21] Voisin C., “Hodge loci and absolute Hodge classes”, Compositio Math., 143 (2007), 945–958 ; math.AG/0605766 | MR | Zbl