@article{SIGMA_2009_5_a85,
author = {Stefan Haesen and Leopold Verstraelen},
title = {Natural {Intrinsic} {Geometrical} {Symmetries}},
journal = {Symmetry, integrability and geometry: methods and applications},
year = {2009},
volume = {5},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SIGMA_2009_5_a85/}
}
Stefan Haesen; Leopold Verstraelen. Natural Intrinsic Geometrical Symmetries. Symmetry, integrability and geometry: methods and applications, Tome 5 (2009). http://geodesic.mathdoc.fr/item/SIGMA_2009_5_a85/
[1] Asperti A., Lobos G., Mercuri F., “Pseudo-parallel submanifolds of a space-form”, Adv. Geom., 2 (2002), 57–71 | DOI | MR | Zbl
[2] Belkhelfa M., Deszcz R., Verstraelen L., “Symmetry properties of 3-dimensional d'Atri spaces”, Kyungpook Math. J., 46 (2006), 367–376 | MR | Zbl
[3] Berger M., “La géométrie métrique des variétés riemanniennes (variations sur la formule $a^2=b^2+c^2-2bc\cos\alpha$)”, Élie Cartan et les mathématiques d'aujourd'hui, Astérisque, Paris, 1985, 9–66 | MR | Zbl
[4] Berger M., A panoramic view of Riemannian geometry, Springer-Verlag, Berlin, 2003 | MR
[5] Boeckx E., Foliated semi-symmetric spaces, Ph.D. Thesis, K. U. Leuven, Leuven, Belgium, 1995
[6] Boruvka O., “Sur une classe de surfaces minima plongées dans un espace à quatre dimensions à courbure constante”, Bull. Int. Česka Acad. Praze, 29 (1928), 256–277
[7] Bryant R. L., “Some remarks on the geometry of austere manifolds”, Bol. Soc. Brasil. Math. (N.S.), 21 (1991), 133–157 | DOI | MR | Zbl
[8] Bryant R. L., “Second order families of special Lagrangian 3-folds”, Perspectives in Riemannian Geometry, CRM Proc. Lecture Notes, 40, Amer. Math. Soc., Providence, RI, 2006, 63–98 ; math.DG/0007128 | MR | Zbl
[9] Cecil T., Lie sphere geometry, with applications to submanifold, 2nd ed., Springer-Verlag, New-York, 2007 | MR
[10] Cecil T., “Isoparametric and Dupin hypersurfaces”, SIGMA, 4 (2008), 062, 28 pp., ages ; arXiv:0809.1433 | MR | Zbl
[11] Chen B.-Y., “Totally umbilical submanifolds”, Soochow Math. J., 5 (1980), 9–37 | MR | Zbl
[12] Choi T., Lu Z., “On the DDVV conjecture and the comass in calibrated geometry. I”, Math. Z., 260 (2008), 409–429 ; math.DG/0610709 | DOI | MR | Zbl
[13] Dajczer M., Tojeiro R., “Submanifolds of codimension two attaining equality in an extrinsic inequality”, Math. Proc. Cambridge Philos. Soc., 146 (2009), 461–474 ; arXiv:0802.0805 | DOI | MR | Zbl
[14] Dajczer M., Tojeiro R., “All superconformal surfaces in $\mathbb R^4$ in terms of minimal surfaces”, Math. Z., 261 (2009), 869–890 ; arXiv:0710.5317 | DOI | MR | Zbl
[15] Defever F., Deszcz R., “A note on geodesic mappings of pseudosymmetric Riemannian manifolds”, Colloq. Math., 62 (1991), 313–319 | MR | Zbl
[16] Defever F., Deszcz R., Verstraelen L., Vrancken L., “On pseudosymmetric space-times”, J. Math. Phys., 35 (1994), 5908–5921 | DOI | MR | Zbl
[17] Deprez J., Deszcz R., Verstraelen L., “Examples of pseudo-symmetric conformally flat warped products”, Chinese J. Math., 17 (1989), 51–65 | MR | Zbl
[18] De Smet P. J., Dillen F., Verstraelen L., Vrancken L., “A pointwise inequality in submanifold theory”, Arch. Math. (Brno), 35 (1999), 115–128 | MR | Zbl
[19] Deszcz R., “On pseudosymmetric spaces”, Bull. Soc. Math. Belg. Sér. A, 44 (1992), 1–34 | MR | Zbl
[20] Deszcz R., Grycak W., “On some class of warped product manifolds”, Bull. Inst. Math. Acad. Sinica, 15 (1987), 311–322 | MR | Zbl
[21] Deszcz R., Grycak W., “On certain curvature conditions on Riemannian manifolds”, Colloq. Math., 58 (1990), 259–268 | MR | Zbl
[22] Deszcz R., Haesen S., Verstraelen L., “Classification of space-times satisfying some pseudo-symmetry type conditions”, Soochow J. Math., 30 (2004), 339–349 | MR | Zbl
[23] Deszcz R., Haesen S., Verstraelen L., “On natural symmetries”, Topics in Differential Geometry, Chapter 6, eds. A. Mihai, I. Mihai and R. Miron, Editura Academiei Române, 2008, 249–308 | MR | Zbl
[24] Deszcz R., Petrović-Torgašev M., Ṣentürk Z., Verstraelen L., Characterisation of the pseudo-symmetries of ideal Wintgen submanifolds of dimension 3, Preprint, 2007
[25] Deszcz R., Verstraelen L., Vrancken L., “The symmetry of warped product spacetimes”, Gen. Relativity Gravitation, 23 (1991), 671–681 | DOI | MR | Zbl
[26] Deszcz R., Verstraelen L., Yaprak \d S., “Warped products realizing a certain condition of pseudosymmetry type imposed on the Weyl curvature tensor”, Chinese J. Math., 22 (1994), 139–157 | MR | Zbl
[27] Dillen F., Nölker S., “Semi-parallelity, multi-rotation surfaces and the helix property”, J. Reine Angew. Math., 435 (1993), 33–63 | MR | Zbl
[28] Dillen F., Fastenakels J., Haesen S., Van der Veken J., Verstraelen L., Submanifold theory and the parallel transport of Levi-Civita, Preprint
[29] Dillen F., Fastenakels J., Van der Veken J., “A pinching theorem for the normal scalar curvature of invariant submanifolds”, J. Geom. Phys., 57 (2007), 833–840 | DOI | MR | Zbl
[30] Dillen F., Fastenakels J., Van der Veken J., “Remarks on an inequality involving the normal scalar curvature”, Pure and Applied Differential Geometry – PADGE 2007, Shaker Verlag, Aachen, 2007, 83–92 ; math.DG/0610721 | MR | Zbl
[31] Eisenhart L. P., “Minimal surfaces in Euclidean four space”, Am. J. Math., 34 (1912), 215–236 | DOI | MR | Zbl
[32] Eisenhart L. P., Riemannian geometry, Princeton University Press, Princeton, NJ, 1997 | MR
[33] Ferus D., “Symmetric submanifolds of Euclidean spaces”, Math. Ann., 247 (1980), 81–93 | DOI | MR | Zbl
[34] Ge J., Tang Z., “A proof of the DDVV conjecture and its equality case”, Pacific J. Math, 237 (2008), 87–95 ; arXiv:0801.0650 | DOI | MR | Zbl
[35] Grycak W., “On semi-decomposable 2-recurrent Riemannian spaces”, Sci. Papers Inst. Math. Wrocław Techn. Univ., 16 (1976), 15–25 | MR | Zbl
[36] Guadalupe I. V., Rodriguez L., “Normal curvature of surfaces in space forms”, Pacific J. Math., 106 (1983), 95–103 | MR | Zbl
[37] Haesen S., Verstraelen L., “Classification of the pseudosymmetric space-times”, J. Math. Phys., 45 (2004), 2343–2346 | DOI | MR | Zbl
[38] Haesen S., Verstraelen L., “Curvature and symmetries of parallel transport”, Differential Geometry and Topology, Discrete and Computational Geometry, Chapter 8, NATO Science Series III, 197, eds. M. Boucetta and J.-M. Morvan, IOS Press, 2005, 197–238 | Zbl
[39] Haesen S., Verstraelen L., “Properties of a scalar curvature invariant depending on two planes”, Manuscripta Math., 122 (2007), 59–72 | DOI | MR | Zbl
[40] von Helmholtz H., “Über die Thatsachen, die der Geometrie zu Grunde liegen”, Nachrichten von der Konigl. Gesellschaft der Wissenschaften zu Gottingen, 1868, no. 9, 193–221 ; Wissenschaftliche Abhandlungen, V. II, Johann Ambrosius Barth, Leipzig, 618–639 | Zbl
[41] Jahanara B., Haesen S., Ṣentürk Z., Verstraelen L., “On the parallel transport of the Ricci curvatures”, J. Geom. Phys., 57 (2007), 1771–1777 | DOI | MR | Zbl
[42] Jahanara B., Haesen S., Petrović-Torgašev M., Verstraelen L., “On the Weyl curvature of Deszcz”, Publ. Math. Debrecen, 74 (2009), 417–431 | MR | Zbl
[43] Kobayashi S., Nomizu K., Foundations of differential geometry, Vol. I, John Wiley and Sons, New York, 1963 | MR | Zbl
[44] Kobayashi S., Nomizu K., Foundations of differential geometry, Vol. II, John Wiley and Sons, New York, 1969 | MR | Zbl
[45] Kommerell K., “Riemann'sche Flächen in ebenen Raum von vier Dimensionen”, Math. Ann., 60 (1905), 548–596 | DOI | MR
[46] Kowalski O., “An explicit classification of 3-dimensional Riemannian spaces satisfying $R(X,Y)\cdot R=0$”, Czechoslovak Math. J., 46 (1996), 427–474 | MR | Zbl
[47] Kowalski O., Sekizawa M., “Pseudo-symmetric spaces of constant type in dimension three – elliptic spaces”, Rend. Mat. Appl. (7), 17 (1997), 477–512 | MR | Zbl
[48] Kowalski O., Sekizawa M., “Pseudo-symmetric spaces of constant type in dimension three – non-elliptic spaces”, Bull. Tokyo Gakugei Univ. (4), 50 (1998), 1–28 | MR | Zbl
[49] Kühnel W., Differential geometry: Curves – surfaces – manifolds, 2nd ed., Student Mathematical Library, 16, American Mathematical Society, Providence, RI, 2006 | MR
[50] Levi-Civita T., “Nozione di parallelismo in una varietà qualunque e conseguente specificazione geometrica della curvatura Riemanniana”, Rend. Cir. Mat. Palermo, 42 (1917), 173–205 | DOI
[51] Lobos G. A., Tojeiro R., “Pseudo-parallel submanifolds with flat normal bundle of space forms”, Glasg. Math. J., 48 (2006), 171–177 | DOI | MR | Zbl
[52] Lu Z., On the DDVV conjecture and the comass in calibrated geometry, II, arXiv:0708.2921
[53] Lumiste Ü., Semiparallel submanifolds in real space forms, Springer, New York, 2009 | MR | Zbl
[54] Matveev V. S., “Geometric explanantion of the Beltrami theorem”, Int. J. Geom. Methods Mod. Phys., 3 (2006), 623–629 | DOI | MR | Zbl
[55] Mikeš J., “Geodesic mappings of special Riemannian spaces”, Topics in Differential Geometry, Vol. II (Hajduszoboszló 1984), Colloq. Math. Soc. János Bolyai, 46, North-Holland, Amsterdam, 1988, 793–813 | MR
[56] Nomizu K., “On hypersurfaces satisfying a certain curvature condition on the curvature tensor”, Tôhoku Math. J. (2), 20 (1968), 46–59 | MR | Zbl
[57] Olszak Z., “On totally umbilical submanifolds of Cartan symmetric manifolds”, Demonstratio Math., 9 (1976), 95–103 | MR | Zbl
[58] Petrović-Torgašev M., Verstraelen L., “On Deszcz symmetries of Wintgen ideal submanifolds”, Arch. Math. (Brno), 44 (2008), 57–67 | MR
[59] Petrović-Torgašev M., Verstraelen L., Intrinsic curvature properties of Wintgen ideal submanifolds, Preprint, 2007 | Zbl
[60] Riemann B., “Über die Hypothesen, welche der Geometrie zu Grunde liegen”, Gaußsche Flächentheorie, Riemannsche Räume und Minkowski-Welt, Teubner Verlagsgesellschaft, Leipzig, 1984 | Zbl
[61] Rouxel B., “Sur une famille de A-surfaces d'un espace euclidien $\mathbb E^4$”, Proc. X Österreichischer Mathematiker Kongress, Innsbrück, 1981, 185
[62] Schouten J. A., “Die direkte Analysis zur neueren Relativitätstheorie”, Verhan. Konink. Akad. Wet. Amsterdam, 12:6 (1918), 1–95
[63] Szabó Z. I., “Structure theorems on Riemannian spaces satisfying $R(X,Y)\cdot R=0$. I. The local version”, J. Differential Geom., 17 (1982), 531–582 | MR | Zbl
[64] Szabó Z. I., “Structure theorems on Riemannian spaces satisfying $R(X,Y)\cdot R=0$. II. Global version”, Geom. Dedicata, 19 (1985), 65–108 | DOI | MR | Zbl
[65] Thurston W. P., “Three-dimensional manifolds, Kleinian groups and hyperbolic geometry”, Bull. Amer. Math. Soc. (N.S.), 6 (1982), 357–381 | DOI | MR
[66] Thurston W. P., Three-dimensional geometry and topology, Vol. 1, Princeton Mathematical Series, 35, Princeton University Press, Princeton, NJ, 1997 | MR | Zbl
[67] Venzi P., “On geodesic mappings in Riemannian or pseudo-Riemannian manifolds”, Tensor (N.S.), 32 (1978), 193–198 | MR | Zbl
[68] Verstraelen L., “Comments on pseudo-symmetry in the sense of Ryszard Deszcz”, Geometry and Topology Of Submanifolds, VI, eds. F. Dillen et al., World Sci. Publ., River Edge, NJ, 1994, 199–209 | MR | Zbl
[69] Weyl H., Symmetry, Princeton University Press, Princeton, N.J., 1952 | MR | Zbl
[70] Wintgen P., “Sur l'inégalité de Chen-Willmore”, C. R. Acad. Sci. Paris Sér. A-B, 288 (1979), A993–A995 | MR
[71] Wolf J. A., Spaces of constant curvature, MacGraw-Hill, New York, 1967 | MR