Cryptohermitian Picture of Scattering Using Quasilocal Metric Operators
Symmetry, integrability and geometry: methods and applications, Tome 5 (2009) Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

One-dimensional unitary scattering controlled by non-Hermitian (typically, $\mathcal{PT}$-symmetric) quantum Hamiltonians $H\neq H^\dagger$ is considered. Treating these operators via Runge–Kutta approximation, our three-Hilbert-space formulation of quantum theory is reviewed as explaining the unitarity of scattering. Our recent paper on bound states [arXiv:0901.0700] is complemented by the text on scattering. An elementary example illustrates the feasibility of the resulting innovative theoretical recipe. A new family of the so called quasilocal inner products in Hilbert space is found to exist. Constructively, these products are all described in terms of certain non-equivalent short-range metric operators $\Theta\neq I$ represented, in Runge–Kutta approximation, by $(2R-1)$-diagonal matrices.
Keywords: cryptohermitian observables; unitary scattering; Runge–Kutta discretization; quasilocal metric operators.
@article{SIGMA_2009_5_a84,
     author = {Miloslav Znojil},
     title = {Cryptohermitian {Picture} of {Scattering} {Using} {Quasilocal} {Metric} {Operators}},
     journal = {Symmetry, integrability and geometry: methods and applications},
     year = {2009},
     volume = {5},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SIGMA_2009_5_a84/}
}
TY  - JOUR
AU  - Miloslav Znojil
TI  - Cryptohermitian Picture of Scattering Using Quasilocal Metric Operators
JO  - Symmetry, integrability and geometry: methods and applications
PY  - 2009
VL  - 5
UR  - http://geodesic.mathdoc.fr/item/SIGMA_2009_5_a84/
LA  - en
ID  - SIGMA_2009_5_a84
ER  - 
%0 Journal Article
%A Miloslav Znojil
%T Cryptohermitian Picture of Scattering Using Quasilocal Metric Operators
%J Symmetry, integrability and geometry: methods and applications
%D 2009
%V 5
%U http://geodesic.mathdoc.fr/item/SIGMA_2009_5_a84/
%G en
%F SIGMA_2009_5_a84
Miloslav Znojil. Cryptohermitian Picture of Scattering Using Quasilocal Metric Operators. Symmetry, integrability and geometry: methods and applications, Tome 5 (2009). http://geodesic.mathdoc.fr/item/SIGMA_2009_5_a84/

[1] Znojil M., “Three-Hilbert-space formulation of quantum mechanics”, SIGMA, 5 (2009), 001, 19 pp., ages ; arXiv:0901.0700 | MR | Zbl

[2] Acton F. S., Numerical methods that work, Harper Row, New York, 1970 ; Znojil M., “One-dimensional Schrödinger equation and its “exact” representation on a discrete lattice”, Phys. Lett. A, 223 (1996), 411–416 ; Fernández F. M., Guardiola R., Ros J., Znojil M., “A family of complex potentials with real spectrum”, J. Phys. A: Math. Gen., 32 (1999), 3105–3116 ; quant-ph/9812026 | Zbl | DOI | MR | Zbl | DOI | MR | Zbl

[3] Znojil M., “Discrete $\mathcal{PT}$-symmetric models of scattering”, J. Phys. A: Math. Theor., 41 (2008), 292002, 9 pp., ages ; arXiv:0806.2019 | DOI | MR | Zbl

[4] Znojil M., “Comment on “Conditionally exactly soluble class of quantum potentials””, Phys. Rev. A, 61 (2000), 066101, 4 pp., ages ; quant-ph/9811088 | DOI

[5] Sibuya Y., Global theory of second order linear differential equation with polynomial coefficient, North Holland, Amsterdam, 1975 | Zbl

[6] Bender C. M., Turbiner A., “Analytic continuation of eigenvalue problems”, Phys. Lett. A, 173 (1993), 442–446 | DOI | MR

[7] Buslaev V., Grecchi V., “Equivalence of unstable anharmonic oscillators and double wells”, J. Phys. A: Math. Gen., 26 (1993), 5541–5549 | DOI | MR | Zbl

[8] Ahmed Z., Bender C. M., Berry M. V., “Reflectionless potentials and $\mathcal{PT}$ symmetry”, J. Phys. A: Math. Gen., 38 (2005), L627–L630 ; ; Jones H. F., Mateo J., “An equivalent Hermitian Hamiltonian for the non-Hermitian $-x^4$ potential”, Phys. Rev. D, 73 (2006), 085002, 4 pp., ages ; ; Jones H. F., Mateo J., Rivers R. J., “On the path-integral derivation of the anomaly for the Hermitian equivalent of the complex $\mathcal{PT}$-symmetric quartic Hamiltonian”, Phys. Rev. D, 74 (2006), 125022, 6 pp., ages ; quant-ph/0508117quant-ph/0601188hep-th/0610245 | DOI | MR | Zbl | DOI | MR | DOI | MR

[9] Bender C. M., Boettcher S., “Real spectra in non-Hermitian Hamiltonians having $\mathcal{PT}$ symmetry”, Phys. Rev. Lett., 80 (1998), 5243–5246 ; physics/9712001 | DOI | MR | Zbl

[10] Dorey P., Dunning C., Tateo R., “Spectral equivalences, Bethe ansatz equations, and reality properties in $\mathcal{PT}$-symmetric quantum mechanics”, J. Phys. A: Math. Gen., 34 (2001), 5679–5704 ; ; Dorey P., Dunning C., Tateo R., “The ODE/IM correspondence”, J. Phys. A: Math. Gen., 40 (2007), R205–R283 ; hep-th/0103051hep-th/0703066 | DOI | MR | Zbl | DOI | MR | Zbl

[11] Shin K. C., “On the Reality of the eigenvalues for a class of $\mathcal{PT}$-symmetric oscillators”, Comm. Math. Phys., 229 (2002), 543–564 ; ; Davies E. B., Linear operators and their spectra, Cambridge University Press, Cambridge, 2007 math-ph/0201013 | DOI | MR | Zbl | MR | Zbl

[12] Bender C. M., “Making sense of non-Hermitian Hamiltonians”, Rep. Progr. Phys., 70 (2007), 947–1018 ; hep-th/0703096 | DOI | MR

[13] Smilga A. V., “Cryptogauge symmetry and cryptoghosts for crypto-Hermitian Hamiltonians”, J. Phys. A: Math. Theor., 41 (2008), 244026, 21 pp., ages ; arXiv:0706.4064 | DOI | MR | Zbl

[14] Scholtz F. G., Geyer H. B., Hahne F. J. W., “Quasi-Hermitian operators in quantum mechanics and the variational principle”, Ann. Physics, 213 (1992), 74–101 | DOI | MR | Zbl

[15] Messiah A., Quantum mechanics, North Holland, Amsterdam, 1961

[16] Bender C. M., Brandt S. F., Chen J.-H., Wang Q., “Ghost busting: $\mathcal{PT}$-symmetric interpretation of the Lee model”, Phys. Rev. D, 71 (2005), 025014, 11 pp., ages ; hep-th/0411064 | DOI

[17] Bessis D., Private communication, 1992

[18] Mostafazadeh A., “Metric operator in pseudo-Hermitian quantum mechanics and the imaginary cubic potential”, J. Phys. A: Math. Gen., 39 (2006), 10171–10188 ; quant-ph/0508195 | DOI | MR | Zbl

[19] Znojil M., “Time-dependent version of cryptohermitian quantum theory”, Phys. Rev. D, 78 (2008), 085003, 5 pp., ages ; arXiv:0809.2874 | DOI | MR

[20] Bila H., A diabatic time-dependent metrics in $\mathcal{PT}$-symmetric quantum theories, arXiv:0902.0474

[21] Jakubský V., “Thermodynamics of pseudo-Hermitian systems in equilibrium”, Modern Phys. Lett. A, 22 (2007), 1075–1084 ; ; Assis P. E. G., Fring A., “The quantum brachistochrone problem for non-Hermitian Hamiltonians”, J. Phys. A: Math. Theor., 41 (2008), 244002, 12 pp., ages ; ; Rotter I., “A non-Hermitian Hamilton operator and the physics of open quantum systems”, J. Phys. A: Math. Theor., 42 (2009), 153001, 51 pp., ages ; quant-ph/0703092quant-ph/0703254arXiv:0711.2926 | DOI | MR | Zbl | DOI | MR | Zbl | DOI | MR | Zbl

[22] Jones H. F., “Scattering from localized non-Hermitian potentials”, Phys. Rev. D, 76 (2007), 125003, 5 pp., ages ; arXiv:0707.3031 | DOI

[23] Znojil M., “Scattering theory with localized non-Hermiticites”, Phys. Rev. D, 78 (2008), 025026, 10 pp., ages ; arXiv:0805.2800 | DOI | MR

[24] Ahmed Z., “Handedness of complex $\mathcal{PT}$-symmetric potential barriers”, Phys. Lett. A, 324 (2004), 152–158 ; ; Cannata F., Dedonder J.-P., Ventura A., “Scattering in $\mathcal{PT}$-symmetric quantum mechanics”, Ann. Physics, 322 (2007), 397–433 ; quant-ph/0312151quant-ph/0606129 | DOI | MR | Zbl | DOI | MR | Zbl

[25] Jones H. F., “Interface between Hermitian and non-Hermitian Hamiltonians in a model calculation”, Phys. Rev. D, 78 (2008), 065032, 7 pp., ages ; arXiv:0805.1656 | DOI

[26] Dieudonne J., “Quasi-Hermitian operators”, Proc. Internat. Sympos. Linear Spaces (Jerusalem, 1960), Pergamon, Oxford, 1961, 115–122 ; Williams J. P., “Operators similar to their adjoints”, Proc. Amer. Math. Soc., 20 (1969), 121–123 | MR | DOI | MR | Zbl

[27] Mostafazadeh A., “Delta-function potential with a complex coupling”, J. Phys. A: Math. Gen., 39 (2006), 13495–13506 ; quant-ph/0606198 | DOI | MR | Zbl

[28] Jones H. F., Talk presented during conference “Pseudo-Hermitian Hamiltonians in Quantum Physics VI”, London, City University, July 16–18, 2007

[29] Mostafazadeh A., Mehri-Dehnavi H., “Spectral singularities, biorthonormal systems and a two-parameter family of complex point interactions”, J. Phys. A: Math. Theor., 42 (2009), 125303, 27 pp., ages ; arXiv:0901.3563 | DOI | MR | Zbl

[30] Znojil M.,, “Singular anharmonicities and the analytic continued fractions. I”, J. Math. Phys., 30 (1989), 23–27 ; Znojil M., “Singular anharmonicities and the analytic continued fractions. II. The potentials $V(r)=ar^2+br^{-4}+cr^{-6}$”, J. Math. Phys., 31 (1990), 108–112 | DOI | MR | Zbl | DOI | MR | Zbl

[31] Znojil M., “Extended continued fractions and energies of the anharmonic oscillators”, J. Math. Phys., 24 (1983), 1136–1141 ; Znojil M., “The generalized continued fractions and potentials of the Lennard–Jones type”, J. Math. Phys., 31 (1990), 1955–1961 | DOI | MR | Zbl | DOI | MR | Zbl

[32] Mostafazadeh A., “Hilbert space structures on the solution space of Klein–Gordon type evolution equations”, Classical Quantum Gravity, 20 (2003), 155–171 ; math-ph/0209014 | DOI | MR | Zbl

[33] Jakubský V., Smejkal J., “A positive-definite inner product for free Proca particle”, Czechoslovak J. Phys., 56 (2006), 985–998 ; Smejkal J., Jakubský V., Znojil M., “Relativistic vector bosons and $\mathcal{PT}$-symmetry”, J. Phys. Stud., 11 (2007), 45–54 ; ; Zamani F., Mostafazadeh A., “Quantum mechanics of Proca fields”, J. Math. Phys., 50 (2009), 052302, 35 pp., ages ; hep-th/0611287arXiv:0805.1651 | DOI | MR | DOI | MR