@article{SIGMA_2009_5_a83,
author = {Christiane Quesne},
title = {Solvable {Rational} {Potentials} and {Exceptional} {Orthogonal} {Polynomials} in {Supersymmetric} {Quantum} {Mechanics}},
journal = {Symmetry, integrability and geometry: methods and applications},
year = {2009},
volume = {5},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SIGMA_2009_5_a83/}
}
TY - JOUR AU - Christiane Quesne TI - Solvable Rational Potentials and Exceptional Orthogonal Polynomials in Supersymmetric Quantum Mechanics JO - Symmetry, integrability and geometry: methods and applications PY - 2009 VL - 5 UR - http://geodesic.mathdoc.fr/item/SIGMA_2009_5_a83/ LA - en ID - SIGMA_2009_5_a83 ER -
%0 Journal Article %A Christiane Quesne %T Solvable Rational Potentials and Exceptional Orthogonal Polynomials in Supersymmetric Quantum Mechanics %J Symmetry, integrability and geometry: methods and applications %D 2009 %V 5 %U http://geodesic.mathdoc.fr/item/SIGMA_2009_5_a83/ %G en %F SIGMA_2009_5_a83
Christiane Quesne. Solvable Rational Potentials and Exceptional Orthogonal Polynomials in Supersymmetric Quantum Mechanics. Symmetry, integrability and geometry: methods and applications, Tome 5 (2009). http://geodesic.mathdoc.fr/item/SIGMA_2009_5_a83/
[1] Bargmann V., “On the connection between phase shifts and scattering potential”, Rev. Modern Phys., 21 (1949), 488–493 | DOI | MR | Zbl
[2] Sukumar C. V., “Supersymmetric quantum mechanics of one-dimensional systems”, J. Phys. A: Math. Gen., 18 (1985), 2917–2936 | DOI | MR
[3] Cooper F., Khare A., Sukhatme U., “Supersymmetry and quantum mechanics”, Phys. Rep., 251 (1995), 267–385 ; hep-th/9405029 | DOI | MR
[4] Junker G., Supersymmetric methods in quantum and statistical physics, Text and Monographs in Physics, Springer-Verlag, Berlin, 1996 | MR
[5] Bagchi B., Supersymmetry in quantum and classical mechanics Chapman Hall/CRC Monographs and Surveys in Pure and Applied Mathematics, 116, Chapman Hall/CRC, Boca Raton, FL, 2000 | MR
[6] Mielnik B., Rosas-Ortiz O., “Factorization: little or great algorithm?”, J. Phys. A: Math. Gen., 37 (2004), 10007–10035 | DOI | MR | Zbl
[7] Infeld L., Hull T. E., “The factorization method”, Rev. Modern Phys., 23 (1951), 21–68 | DOI | MR | Zbl
[8] Fatveev V. V., Salle M. A., Darboux transformations and solitons, Springer Series in Nonlinear Dynamics, Springer, New York, 1991 | MR
[9] Mielnik B.,, “Factorization method and new potentials with the oscillator spectrum”, J. Math. Phys., 25 (1984), 3387–3389 | DOI | MR | Zbl
[10] Mitra A., Roy P. K., Lahiri A., Bagchi B., “Nonuniqueness of the factorization scheme in quantum mechanics”, Internat. J. Theoret. Phys., 28 (1989), 911–916 | DOI | MR | Zbl
[11] Junker G., Roy P., “Conditionally exactly solvable problems and non-linear algebras”, Phys. Lett. A, 232 (1997), 155–161 | DOI | MR | Zbl
[12] Bagchi B., Quesne C., “Zero-energy states for a class of quasi-exactly solvable rational potentials”, Phys. Lett. A, 230 (1997), 1–6 ; quant-ph/9703037 | DOI | MR | Zbl
[13] Blecua P., Boya L. J., Segui A.,, “New solvable quantum-mechanical potentials by iteration of the free $V=0$ potential”, Nuovo Cimento Soc. Ital. Fis. B, 118 (2003), 535–546 ; quant-ph/0311139 | MR
[14] Gómez-Ullate D., Kamran N., Milson R., “The Darboux transformation and algebraic deformations of shape-invariant potentials”, J. Phys. A: Math. Gen., 37 (2004), 1789–1804 ; quant-ph/0308062 | DOI | MR | Zbl
[15] Gómez-Ullate D., Kamran N., Milson R., “Supersymmetry and algebraic Darboux transformations”, J. Phys. A: Math. Gen., 37 (2004), 10065–10078 | DOI | MR | Zbl
[16] Cariñena J. F., Perelomov A. M., Rañada M. F., Santander M., “A quantum exactly solvable nonlinear oscillator related to the isotonic oscillator”, J. Phys. A: Math. Theor., 41:8 (2008), Article ID 085301, 10 pp., ages ; arXiv:0711.4899 | DOI | MR
[17] Andrianov A. A., Ioffe M. V., Cannata F., Dedonder J.-P., “Second order derivative supersymmetry, $q$ deformations and the scattering problem”, Internat. J. Modern Phys. A, 10 (1995), 2683–2702 ; hep-th/9404061 | DOI | MR | Zbl
[18] Andrianov A. A., Ioffe M. V., Nishnianidze D. N., “Polynomial supersymmetry and dynamical symmetries in quantum mechanics”, Theoret. and Math. Phys., 104:3 (1995), 1129–1140 | DOI | MR | Zbl
[19] Andrianov A. A., Ioffe M. V., Nishnianidze D. N., “Polynomial SUSY in quantum mechanics and second derivative Darboux transformations”, Phys. Lett. A, 201 (1995), 103–110 ; hep-th/9404120 | DOI | MR | Zbl
[20] Samsonov B. F., “New features in supersymmetry breakdown in quantum mechanics”, Modern Phys. Lett. A, 11 (1996), 1563–1567 ; quant-ph/9611012 | DOI | MR | Zbl
[21] Bagchi B., Ganguly A., Bhaumik D., Mitra A., “Higher derivative supersymmetry, a modified Crum–Darboux transformation and coherent state”, Modern Phys. Lett. A, 14 (1999), 27–34 | DOI | MR
[22] Aoyama H., Sato M., Tanaka T., “$\mathcal N$-fold supersymmetry in quantum mechanics: general formalism”, Nuclear Phys. B, 619 (2001), 105–127 ; quant-ph/0106037 | DOI | MR | Zbl
[23] Fernández C. D. J., Fernández-García N., “Higher-order supersymmetric quantum mechanics”, Latin-American School of Physics – XXXV ELAF, AIP Conf. Proc., 744, Amer. Inst. Phys., Melville, NY, 2005, 236–273 ; quant-ph/0502098 | MR
[24] Contreras-Astorga A., Fernández C. D. J., “Supersymmetric partners of the trigonometric Pöschl–Teller potentials”, J. Phys. A: Math. Theor., 41 (2008), 475303, 18 pp., ages ; arXiv:0809.8760 | DOI | MR | Zbl
[25] Duistermaat J. J., Grünbaum F. A., “Differential equations in the spectral parameter”, Comm. Math. Phys., 103 (1986), 177–240 | DOI | MR | Zbl
[26] Erdélyi A., Magnus W., Oberhettinger F., Tricomi F. G., Higher transcendental functions, Mc-Graw Hill, New York, 1953
[27] Bagchi B., Quesne C., Roychoudhury R., “Isospectrality of conventional and new extended potentials, second-order supersymmetry and role of $\mathcal PT$ symmetry”, Pramana J. Phys., 73 (2009), 337–347 ; arXiv:0812.1488 | DOI
[28] Gómez-Ullate D., Kamran N., Milson R., An extension of Bochner's problem: exceptional invariant subspaces, arXiv:0805.3376
[29] Gómez-Ullate D., Kamran N., Milson R., “An extended class of orthogonal polynomials defined by a Sturm–Liouville problem”, J. Math. Anal. Appl., 359 (2009), 352–367 ; arXiv:0807.3939 | DOI | MR | Zbl
[30] Moshinsky M., Smirnov Yu. F., The harmonic oscillator in modern physics, Harwood, Amsterdam, 1996 | Zbl
[31] Gendenshtein L. E., “Derivation of exact spectra of the Schrödinger equation by means of supersymmetry”, JETP Lett., 38 (1983), 356–359
[32] Abramowitz M., Stegun I. A., Handbook of mathematical functions with formulas, graphs, and mathematical tables, National Bureau of Standards Applied Mathematics Series, 55, Washington, D.C., 1964 | MR
[33] Bochner S., “Über Sturm-Liouvillsche Polynomsysteme”, Math. Z., 29 (1929), 730–736 | DOI | MR | Zbl
[34] Quesne C., “Exceptional orthogonal polynomials, exactly solvable potentials and supersymmetry”, J. Phys. A: Math. Theor., 41 (2008), 392001, 6 pp., ages ; arXiv:0807.4087 | DOI | MR | Zbl
[35] Bhattacharjie A., Sudarshan E. C. G., “A class of solvable potentials”, Nuovo Cimento, 25 (1962), 864–879 | DOI | MR | Zbl
[36] Bagchi B., Tanaka T., Existence of different intermediate Hamiltonians in type A $\mathcal N$-fold supersymmetry, arXiv:0905.4330 | MR
[37] Odake S., Sasaki R., Infinitely many shape invariant potentials and new orthogonal polynomials, arXiv:0906.0142 | MR
[38] Quesne C., “Comment: “Application of nonlinear deformation algebra to a physical system with Pöschl–Teller potential””, [Chen J.-L., Liu Y., Ge M.-L. J. Phys. A: Math. Gen. 31 (1998), 6473–6481], J. Phys. A: Math. Gen., 32 (1999), 6705–6710 ; math-ph/9911004 | DOI | MR | Zbl