@article{SIGMA_2009_5_a82,
author = {T. K. Jana and P. Roy},
title = {Non-Hermitian {Quantum} {Mechanics} with {Minimal} {Length} {Uncertainty}},
journal = {Symmetry, integrability and geometry: methods and applications},
year = {2009},
volume = {5},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SIGMA_2009_5_a82/}
}
T. K. Jana; P. Roy. Non-Hermitian Quantum Mechanics with Minimal Length Uncertainty. Symmetry, integrability and geometry: methods and applications, Tome 5 (2009). http://geodesic.mathdoc.fr/item/SIGMA_2009_5_a82/
[1] Kempf A., “Uncertainty relation in quantum mechanics with quantum group symmetry”, J. Math. Phys., 35 (1994), 4483–4496 ; hep-th/9311147 | DOI | MR | Zbl
[2] Kempf A., Mangano G., Mann R. B., “Hilbert space representation of the minimal length uncertainty relation”, Phys. Rev. D, 52 (1995), 1108–1118 ; hep-th/9412167 | DOI | MR
[3] Kempf A., “Non-pointlike particles in harmonic oscillators”, J. Phys. A: Math. Gen., 30 (1997), 2093–2101 ; hep-th/9604045 | DOI | MR | Zbl
[4] Hinrichsen H., Kempf A., “Maximal localization in the presence of minimal uncertainties in positions and in momenta”, J. Math. Phys., 37 (1996), 2121–2137 | DOI | MR | Zbl
[5] Garay L. J., “Quantum gravity and minimum length”, Internat. J. Modern Phys. A, 10 (1995), 145–165 ; gr-qc/9403008 | DOI
[6] Gross D. J., Mende P. F., “String theory beyond the Planck scale”, Nuclear Phys. B, 303 (1988), 407–454 | DOI | MR
[7] Maggiore M., “A generalized uncertainty principle in quantum gravity”, Phys. Lett. B, 304 (1993), 65–69 ; hep-th/9301067 | DOI | MR
[8] Chang L. N., Minic D., Okamura N., Takeuchi T., “Exact solution of the harmonic oscillator in arbitrary dimensions with minimal length uncertainty relations”, Phys. Rev. D, 65 (2002), 125027, 8 pp., ages | DOI | MR
[9] Dadić I., Jonke L., Meljanac S., “Harmonic oscillator with minimal length uncertainty relations and ladder operators”, Phys. Rev. D, 67 (2003), 087701, 4 pp., ages ; hep-th/0210264 | DOI
[10] Gemba K., Hlousek Z. T., Papp Z., Algebraic solution of the harmonic oscillator with minimal length uncertainty relations, arXiv:0712.2078
[11] Brau F., “Minimal length uncertainty relation and the hydrogen atom”, J. Phys. A: Math. Gen., 32 (1999), 7691–7696 ; quant-ph/9905033 | DOI | MR | Zbl
[12] Fityo T. V., Vakarchuk I. O., Tkachuk V. M., “One-dimensional Coulomb-like problem in deformed space with minimal length”, J. Phys. A: Math. Gen., 39 (2006), 2143–2149 ; quant-ph/0507117 | DOI | MR | Zbl
[13] Akhoury R., Yao Y.-P., “Minimal length uncertainty relation and the hydrogen spectrum”, Phys. Lett. B, 572 (2003), 37–42 ; hep-ph/0302108 | DOI | Zbl
[14] Benczik S., Chang L. N., Minic D., Takeuchi T., “Hydrogen-atom spectrum under a minimal-length hypothesis”, Phys. Rev. A, 72 (2005), 012104, 4 pp., ages ; hep-th/0502222 | DOI
[15] Nouicer K., “Pauli-Hamiltonian in the presence of minimal lengths”, J. Math. Phys., 47 (2006), 122102, 11 pp., ages | DOI | MR | Zbl
[16] Quesne C., Tkachuk V. M., “Dirac oscillator with nonzero minimal uncertainty in position”, J. Phys. A: Math. Gen., 38 (2005), 1747–1765 ; math-ph/0412052 | DOI | MR | Zbl
[17] Nouicer K., “An exact solution of the one-dimensional Dirac oscillator in the presence of minimal lengths”, J. Phys. A: Math. Gen., 39 (2006), 5125–5134 | DOI | MR | Zbl
[18] Quesne C., Tkachuk V. M., “Generalized deformed commutation relations with nonzero minimal uncertainties in position and/or momentum and applications to quantum mechanics”, SIGMA, 3 (2007), 016, 18 pp., ages ; quant-ph/0603077 | MR | Zbl
[19] Spector D., “Minimal length uncertainty relations and new shape invariant models”, J. Math. Phys., 49 (2008), 082101, 8 pp., ages ; arXiv:0707.1028 | DOI | MR | Zbl
[20] Bender C. M., Boettcher S., “Real spectra in non-Hermitian Hamiltonians having $\mathcal{PT}$ symmetry”, Phys. Rev. Lett., 80 (1998), 5243–5246 ; ; Bender C. M., Boettcher S., “Quasi-exactly solvable quartic potential”, J. Phys. A: Math. Gen., 31 (1998), L273–L277 ; physics/9712001physics/9801007 | DOI | MR | Zbl | DOI | MR | Zbl
[21] Makris K. G., El-Ganainy R., Christodoulides D. N., Musslimani Z. H., “Beam dynamics in $\mathcal{PT}$ symmetric optical lattices”, Phys. Rev. Lett., 100 (2008), 103904, 4 pp., ages | DOI
[22] Klaiman S., Günther U., Moiseyev N., “Visualization of branch points in $\mathcal{PT}$ symmetric waveguides”, Phys. Rev. Lett., 101 (2008), 080402, 4 pp., ages ; arXiv:0802.2457 | DOI | MR
[23] Swanson M. S., “Transition elements for a non-Hermitian quadratic Hamiltonian”, J. Math. Phys., 45 (2004), 585–601 | DOI | MR | Zbl
[24] Cooper F., Khare A., Sukhatme U. P., Supersymmetry in quantum mechanics, World Scientific, 2002 | MR
[25] Mostafazadeh A., “Pseudo-Hermiticity versus $\mathcal{PT}$ symmetry: the necessary condition for the reality of the spectrum of a non-Hermitian Hamiltonian”, J. Math. Phys., 43 (2002), 205–214 ; ; Mostafazadeh A., “Pseudo-Hermiticity versus $\mathcal{PT}$-symmetry. II. A complete characterization of non-Hermitian Hamiltonians with a real spectrum”, J. Math. Phys., 43 (2002), 2814–2816 ; ; Mostafazadeh A., “Pseudo-Hermiticity versus $\mathcal{PT}$-symmetry. III. Equivalence of pseudo-Hermiticity and the presence of antilinear symmetries”, J. Math. Phys., 43 (2002), 3944–3951 ; math-ph/0107001math-ph/0110016math-ph/0203005 | DOI | MR | Zbl | DOI | MR | Zbl | DOI | MR | Zbl
[26] Kamran N., Olver P. J., “Lie algebras of differential operators and Lie-algebraic potentials”, J. Math. Anal. Appl., 145 (1990), 342–356 | DOI | MR | Zbl
[27] Quesne C., “Comment: Chen J.-L., Liu Y., Ge M.-L, Application of nonlinear deformation algebra to a physical system with Pöschl–Teller potential”, [J. Phys. A: Math. Gen. 31 (1998), 6473–6481], J. Phys. A: Math. Gen., 32 (1999), 6705–6710 ; ; Chen J.-L., Liu Y., Ge M.-L., “Application of nonlinear deformation algebra to a physical system with Pöschl–Teller potential”, J. Phys. A: Math. Gen., 31 (1998), 6473–6481 math-ph/9911004 | DOI | MR | Zbl | DOI | MR | Zbl