Symmetric Space Cartan Connections and Gravity in Three and Four Dimensions
Symmetry, integrability and geometry: methods and applications, Tome 5 (2009) Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Einstein gravity in both 3 and 4 dimensions, as well as some interesting generalizations, can be written as gauge theories in which the connection is a Cartan connection for geometry modeled on a symmetric space. The relevant models in 3 dimensions include Einstein gravity in Chern–Simons form, as well as a new formulation of topologically massive gravity, with arbitrary cosmological constant, as a single constrained Chern–Simons action. In 4 dimensions the main model of interest is MacDowell–Mansouri gravity, generalized to include the Immirzi parameter in a natural way. I formulate these theories in Cartan geometric language, emphasizing also the role played by the symmetric space structure of the model. I also explain how, from the perspective of these Cartan-geometric formulations, both the topological mass in 3d and the Immirzi parameter in 4d are the result of non-simplicity of the Lorentz Lie algebra $\mathfrak{so}(3,1)$ and its relatives. Finally, I suggest how the language of Cartan geometry provides a guiding principle for elegantly reformulating any “gauge theory of geometry”.
Keywords: Cartan geometry; symmetric spaces; general relativity; Chern–Simons theory; topologically massive gravity; MacDowell–Mansouri gravity.
@article{SIGMA_2009_5_a79,
     author = {Derek K. Wise},
     title = {Symmetric {Space} {Cartan} {Connections} and {Gravity} in {Three} and {Four} {Dimensions}},
     journal = {Symmetry, integrability and geometry: methods and applications},
     year = {2009},
     volume = {5},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SIGMA_2009_5_a79/}
}
TY  - JOUR
AU  - Derek K. Wise
TI  - Symmetric Space Cartan Connections and Gravity in Three and Four Dimensions
JO  - Symmetry, integrability and geometry: methods and applications
PY  - 2009
VL  - 5
UR  - http://geodesic.mathdoc.fr/item/SIGMA_2009_5_a79/
LA  - en
ID  - SIGMA_2009_5_a79
ER  - 
%0 Journal Article
%A Derek K. Wise
%T Symmetric Space Cartan Connections and Gravity in Three and Four Dimensions
%J Symmetry, integrability and geometry: methods and applications
%D 2009
%V 5
%U http://geodesic.mathdoc.fr/item/SIGMA_2009_5_a79/
%G en
%F SIGMA_2009_5_a79
Derek K. Wise. Symmetric Space Cartan Connections and Gravity in Three and Four Dimensions. Symmetry, integrability and geometry: methods and applications, Tome 5 (2009). http://geodesic.mathdoc.fr/item/SIGMA_2009_5_a79/

[1] Achúcarro A., Townsend P. K., “A Chern–Simons action for three-dimensional anti-de Sitter supergravity theories”, Phys. Lett. B, 180 (1986), 89–92 | DOI | MR

[2] Aldinger R. R., “Geometrical $\mathrm{SO}(4,1)$ gauge theory as a basis of extended relativistic objects for hadrons”, J. Phys. A: Math. Gen., 23 (1990), 1885–1907 | DOI | Zbl

[3] Alekseevsky D. V., Michor P. W., “Differential geometry of Cartan connections”, Publ. Math. Debrecen, 47 (1995), 349–375 ; math.DG/9412232 | MR | Zbl

[4] Carlip S., Quantum gravity in 2+1 dimensions, Cambridge Monographs on Mathematical Physics, Cambridge University Press, Cambridge, 1998 | MR | Zbl

[5] Carlip S., “Geometric structures and loop variables in (2+1)-dimensional gravity”, Knots and Quantum Gravity (Riverside, CA, 1993), Oxford Lecture Ser. Math. Appl., 1, ed. J. Baez, Oxford Univ. Press, New York, 1994, 97–111 ; gr-qc/9309020 | MR | Zbl

[6] Carlip S., “The constraint algebra of topologically massive AdS gravity”, J. High Energy Phys., 2008:10 (2008), 078, 19 pp., ages ; arXiv:0807.4152 | DOI | MR

[7] Carlip S., Deser S., Waldron A., Wise D. K., “Cosmological topologically massive gravitons and photons”, Classical Quantum Gravity, 26 (2009), 075008, 24 pp., ages ; ; Carlip S., Deser S., Waldron A., Wise D. K., “Topologically massive AdS gravity”, Phys. Lett. B, 666 (2008), 272–276 ; arXiv:0803.3998arXiv:0807.0486 | DOI | MR | Zbl | DOI | MR

[8] Cartan É., “Les espaces à connexion conforme”, Ann. Soc. Pol. Math., 2 (1923), 171–221

[9] Cartan É., “Les groupes d'holonomie des espaces généralisés”, Acta Math., 48 (1926), 1–42 | DOI | Zbl

[10] Cartan É., La Méthode du Repère Mobile, la Théorie des Groupes Continus et les Espaces Généralisés,, Exposés de Géométrie, , No. 5, Hermann, Paris, 1935

[11] Cartan É., “Les groupes prejectifs qui ne laissent invariante aucune multiplicité plane”, Bul. Soc. Math. France, 41 (1913), 53–96 ; Cartan É., The theory of spinors, Dover, New York, 1981, a reprint of the 1966 English translation | MR | Zbl | MR | Zbl

[12] Cartan É., “On a generalization of the notion of Riemann curvature and spaces with torsion”, Cosmology and Gravitation (Bologna, 1979), NATO Adv. Study Inst. Ser. B: Physics, 58, eds. P. G. Bergmann and V. De Sabbata, Plenum Press, New York – London, 1980, 489–491 ; Translation by G. D. Kerlick from French original article: “Sur une generalisation de la notion de courbure de Riemann et les espaces a torsion”, Comp. Rend. Acad. Sci. Paris, 174 (1922), 593–595 | MR | Zbl

[13] Cartan É., Einstein A., Élie Cartan and Albert Einstein: Letters on absolute parallelism 1929–1932, ed. R. Devever, Princeton University Press, Academie Royale de Belgique, Princeton, N.J., Brussels, 1979 | MR | Zbl

[14] Chern S.-S., Chevalley C., “Obituary: Élie Cartan and his mathematical work”, Bull. Amer. Math. Soc., 58 (1952), 217–250 | DOI | MR | Zbl

[15] Deser S., Jackiw R., Templeton S., “Three-dimensional massive gauge theories”, Phys. Rev. Lett., 48 (1982), 975–978 | DOI

[16] Deser S., “A note on first-order formalism and odd-derivative actions”, Classical Quantum Gravity, 23 (2006), 5773–5776 ; gr-qc/0606006 | DOI | MR | Zbl

[17] Ehresmann C., “Sur les espaces localement homogenes”, L'ens. Math., 35 (1936), 317–333

[18] Freidel L., Starodubtsev A., Quantum gravity in terms of topological observables, hep-th/0501191

[19] Gibbons G. W., Gielen S., “Deformed general relativity and torsion”, Classical Quantum Gravity, 26 (2009), 135005, 18 pp., ages ; arXiv:0902.2001 | DOI | MR | Zbl

[20] Goldman W. M., “Topological components of spaces of representations”, Invent. Math., 93 (1988), 557–607 | DOI | MR | Zbl

[21] Goldman W. M., “Geometric structures and varieties of representations”, The Geometry of Group Representations (Boulder, CO, 1987), Contemp. Math., 74, Amer. Math. Soc., Providence, RI, 1988, 169–198 | MR

[22] Hehl F. W., McCrea J. D., Mielke E. W., Ne'eman Y., “Metric affine gauge theory of gravity: field equations Noether identities, world spinors, and breaking of dilation invariance”, Phys. Rept., 258 (1995), 1–171 ; gr-qc/9402012 | DOI | MR

[23] Helgason S., Differential geometry, Lie groups, and symmetric spaces, Pure and Applied Mathematics, 80, Academic Press, Inc., New York – London, 1978 | MR | Zbl

[24] Ikeda N., Fukuyama T., Fermions in (anti) de Sitter gravity in four dimensions, arXiv:0904.1936

[25] Kobayashi S., “On connections of Cartan”, Canad. J. Math., 8 (1956), 145–156 | MR | Zbl

[26] Kobayashi S., Nomizu K., Foundations of differential geometry, Vol. II, John Wiley Sons, Inc., New York, 1996 | MR

[27] Li W., Song W., Strominger A., “Chiral gravity in three dimensions”, J. High Energy Phys., 2008:4 (2008), 082, 15 pp., ages ; arXiv:0801.4566 | DOI | MR

[28] MacDowell S. W., Mansouri F., “Unified geometric theory of gravity and supergravity”, Phys. Rev. Lett., 38 (1977), 739–742 | DOI | MR

[29] Mielke E. W., Obukhov Y. N., Hehl F. W., “The Yang–Mills configurations from 3-D Riemann–Cartan geometry”, Phys. Lett. A, 192 (1994), 153–162 ; gr-qc/9407031 | DOI | MR | Zbl

[30] Misner C. W., Thorne K. S., Wheeler J. A., Gravitation, W. H. Freeman and Co., San Francisco, Calif., 1973 | MR

[31] Nieto J. A., Socorro J., Obregon O., “Gauge theory of the de Sitter group and the Ashtekar formulation”, Phys. Rev. D, 50 (1994), R3583–R3586 ; ; Nieto J. A., Socorro J., Obregon O., “Gauge theory of supergravity based only on a selfdual spin connection”, Phys. Rev. Lett., 76 (1996), 3482–3485 gr-qc/9402029 | DOI | MR | DOI | MR | Zbl

[32] Randono A., Generalizing the Kodama state. II. Properties and physical interpretation, gr-qc/0611074

[33] Ruh E., “Cartan connections”, Differential Geometry: Riemannian Geometry, Part 3 (Los Angeles, CA, 1990), Proc. Sympos. Pure Math., 54, Amer. Math. Soc., Providence, RI, 1993 | MR | Zbl

[34] Sharpe R. W., Differential geometry: Cartan's generalization of Klein's Erlangen program, Graduate Texts in Mathematics, 166, Springer-Verlag, New York, 1997 | MR | Zbl

[35] Thurston W. P., Three-dimensional geometry and topology, Vol. 1, Princeton Mathematical Series, 35, Princeton University Press, Princeton, NJ, 1997 | MR | Zbl

[36] Thurston W. P., The geometry and topology of three-manifolds, available at http://msri.org/publications/books/gt3m

[37] Trautman A., “Einstein–Cartan theory”, Encyclopedia of Mathematical Physics, Vol. 2, eds. J.-P. Francoise, G. L. Naber and S. T. Tsou, Elsevier, Oxford, 2006, 189–195; gr-qc/0606062

[38] Wise D. K., MacDowell–Mansouri gravity and Cartan geometry, gr-qc/0611154

[39] Witten E., “(2+1)-dimensional gravity as an exactly soluble system”, Nuclear Phys. B, 311 (1988), 46–78 | DOI | MR

[40] Zardecki A., “Gravity as a gauge theory with Cartan connection”, J. Math. Phys., 29 (1988), 1661–1666 | DOI | MR | Zbl