@article{SIGMA_2009_5_a78,
author = {Felipe Leitner},
title = {About {Twistor} {Spinors} with {Zero} in {Lorentzian} {Geometry}},
journal = {Symmetry, integrability and geometry: methods and applications},
year = {2009},
volume = {5},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SIGMA_2009_5_a78/}
}
Felipe Leitner. About Twistor Spinors with Zero in Lorentzian Geometry. Symmetry, integrability and geometry: methods and applications, Tome 5 (2009). http://geodesic.mathdoc.fr/item/SIGMA_2009_5_a78/
[1] Bailey T. N., Eastwood M. G., Gover A. R., “Thomas's structure bundle for conformal, projective and related structures”, Rocky Mountain J. Math., 24 (1994), 1191–1217 | DOI | MR | Zbl
[2] Baum H., Spin-Strukturen und Dirac-Operatoren über pseudoriemannschen Mannigfaltigkeiten, Teubner-Texte zur Mathematik, 41, Teubner-Verlag, Leipzig, 1981 | MR | Zbl
[3] Baum H., “Twistor and Killing spinors in Lorentzian geometry”, Global Analysis and Harmonic Analysis (Marseille-Luminy, 1999), Sémin. Congr., 4, Soc. Math. France, Paris, 2000, 35–52 | MR | Zbl
[4] Baum H., “Conformal Killing spinors and the holonomy problem in Lorentzian geometry – a survey of new results”, Symmetries and Overdetermined Systems of Partial Differential Equations, IMA Vol. Math. Appl., 144, Springer, New York, 2008, 251–264 | MR | Zbl
[5] Baum H., Friedrich Th., Grunewald R., Kath I., Twistor and Killing spinors on Riemannian manifolds, Teubner-Texte zur Mathematik, 124, Teubner-Verlag, Stuttgart – Leipzig, 1991 | MR | Zbl
[6] Baum H., Leitner F., “The twistor equation in Lorentzian spin geometry”, Math. Z., 247 (2004), 795–812 ; math.DG/0305063 | DOI | MR | Zbl
[7] Čap A., Slovák J., “Weyl structures for parabolic geometries”, Math. Scand., 93 (2003), 53–90 ; math.DG/0001166 | MR | Zbl
[8] Čap A., Slovák J., Souček V. “Invariant operators on manifolds with almost Hermitian symmetric structures. I. Invariant differentiation”, Acta Math. Univ. Comenian. (N.S.), 66 (1997), 33–69 ; dg-ga/9503003 | MR | Zbl
[9] Čap A., Slovák J., Souček V., “Bernstein–Gelfand–Gelfand sequences”, Ann. of Math. (2), 154 (2001), 97–113 ; math.DG/0001164 | DOI | MR | Zbl
[10] D'Ambra G., Gromov M., “Lectures on transformation groups: geomerty and dynamics”, Surveys in Differential Geometry (Cambridge, MA, 1990), Lehigh Univ., Bethlehem, PA, 1991, 19–111 | MR
[11] Frances Ch., “Causal conformal vector fields, and singularities of twistor spinors”, Ann. Global Anal. Geom., 32 (2007), 277–295 | DOI | MR | Zbl
[12] Friedrich H., “Twistor connection and normal conformal Cartan connection”, General Relativity and Gravitation, 8 (1977), 303–312 | DOI | MR | Zbl
[13] Kobayashi S., Transformation groups in differential geometry, Springer-Verlag, New York – Heidelberg, 1972 | MR
[14] Lawson H. B., Michelsohn M.-L., Spin geometry, Princeton Mathematical Series, 38, Princeton University Press, Princeton, NJ, 1989 | MR | Zbl
[15] Leitner F., Zeros of conformal vector fields and twistor spinors in Lorentzian geometry, SFB288-Preprint No. 439, Berlin, 1999
[16] Leitner F., The twisor equation in Lorentzian geometry, Dissertation HU Berlin, 2001 ; available at http://edoc.hu-berlin.de/docviews/abstract.php?lang=ger&id=10473 | Zbl
[17] Leitner F., Normal conformal Killing forms, math.DG/0406316
[18] Leitner F., “Conformal Killing forms with normalisation condition”, Rend. Circ. Mat. Palermo (2) Suppl., 75 (2005), 279–292 | MR | Zbl
[19] Leitner F., “Twistor spinors with zero on Lorentzian 5-space”, Comm. Math. Phys., 275 (2007), 587–605 ; math.DG/0602622 | DOI | MR | Zbl
[20] Leitner F., Applications of Cartan and tractor calculus to conformal and CR-geometry, Habilitationsschrift Uni Stuttgart, 2007; available at http://elib.uni-stuttgart.de/opus/volltexte/2009/3922/
[21] Lewandowski J., “Twistor equation in a curved spacetime”, Classical Quantum Gravity, 8 (1991), L11–L17 | DOI | MR | Zbl
[22] Lichnerowicz A., “Killing spinors, twistor spinors and Hijazi inequality”, J. Geom. Phys., 5 (1988), 1–18 | DOI | MR | Zbl
[23] Penrose R., MacCallum M. A. H., “Twistor theory: an approach to the quantisation of fields and space-time”, Phys. Rep. C, 6 (1973), 241–315 | DOI | MR
[24] Penrose R., Rindler W., Spinors and space-time. Vol. 2. Spinor and twistor methods in space-time geometry, Cambridge Monographs on Mathematical Physics, Cambridge University Press, Cambridge, 1986 | MR
[25] Thomas T., The differential invariants of generalized spaces, Cambridge University Press, Cambridge, 1934