@article{SIGMA_2009_5_a77,
author = {Laurent Manivel},
title = {On {Spinor} {Varieties} and {Their} {Secants}},
journal = {Symmetry, integrability and geometry: methods and applications},
year = {2009},
volume = {5},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SIGMA_2009_5_a77/}
}
Laurent Manivel. On Spinor Varieties and Their Secants. Symmetry, integrability and geometry: methods and applications, Tome 5 (2009). http://geodesic.mathdoc.fr/item/SIGMA_2009_5_a77/
[1] Atiyah M. F., Bott R., “A Lefschetz fixed point formula for elliptic complexes. II. Applications”, Ann. of Math. (2), 88 (1968), 451–491 | DOI | MR | Zbl
[2] Chen Y. M., Garsia A. M., Remmel J., “Algorithms for plethysm”, Combinatorics and Algebra (Boulder, Colo., 1983), Contemp. Math., 34, Amer. Math. Soc., Providence, RI, 1984, 109–153 | MR
[3] Chevalley C., The algebraic theory of spinors and Clifford algebras. Collected works, Vol. 2, Springer-Verlag, Berlin, 1997 | MR | Zbl
[4] Dress A. W. M., Wenzel W., “A simple proof of an identity concerning Pfaffians of skew symmetric matrices”, Adv. Math., 112 (1995), 120–134 | DOI | MR | Zbl
[5] Howe R., Tan E. C., Willenbring J. F., “Stable branching rules for classical symmetric pairs”, Trans. Amer. Math. Soc., 357 (2005), 1601–1626 ; math.RT/0311159 | DOI | MR | Zbl
[6] Iarrobino A., Kanev V., Power sums, Gorenstein algebras, and determinantal loci, Lecture Notes in Mathematics, 1721, Springer-Verlag, Berlin, 1999 | MR | Zbl
[7] Kaji H., Yasukura O., “Projective geometry of Freudenthal's varieties of certain type”, Michigan Math. J., 52 (2004), 515–542 | DOI | MR | Zbl
[8] Kanev V., “Chordal varieties of Veronese varieties and catalecticant matrices”, J. Math. Sci. (New York), 94 (1999), 1114–1125 ; math.AG/9804141 | DOI | MR | Zbl
[9] Knuth D. E., “Overlapping Pfaffians”, Electron. J. Combin., 3:2 (1996), paper 5, 13 pp., ages ; math.CO/9503234 | MR
[10] Landsberg J. M., Manivel L., “The projective geometry of Freudenthal's magic square”, J. Algebra, 239 (2001), 477–512 ; math.AG/9908039 | DOI | MR | Zbl
[11] Landsberg J. M., Manivel L., “On the ideals of secant varieties of Segre varieties”, Found. Comput. Math., 4 (2004), 397–422 ; math.AG/0311388 | DOI | MR | Zbl
[12] Landsberg J. M., Weyman J., “On tangential varieties of rational homogeneous varieties”, J. Lond. Math. Soc. (2), 76 (2007), 513–530 ; math.AG/0509388 | DOI | MR | Zbl
[13] Landsberg J. M., Weyman J., On secant varieties of compact Hermitian symmetric spaces, arXiv:0802.3402 | MR
[14] LiE, A computer algebra package for Lie group computations
[15] Zak F. L., Tangents and secants of algebraic varieties, Translations of Mathematical Monographs, 127, American Mathematical Society, Providence, RI, 1993 | MR | Zbl