On the Structure of Lie Pseudo-Groups
Symmetry, integrability and geometry: methods and applications, Tome 5 (2009) Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We compare and contrast two approaches to the structure theory for Lie pseudo-groups, the first due to Cartan, and the second due to the first two authors. We argue that the latter approach offers certain advantages from both a theoretical and practical standpoint.
Keywords: Lie pseudo-group; infinitesimal generator; jet; contact form; Maurer–Cartan form; structure equations; essential invariant.
@article{SIGMA_2009_5_a76,
     author = {Peter J. Olver and Juha Pohjanpelto and Francis Valiquette},
     title = {On the {Structure} of {Lie} {Pseudo-Groups}},
     journal = {Symmetry, integrability and geometry: methods and applications},
     year = {2009},
     volume = {5},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SIGMA_2009_5_a76/}
}
TY  - JOUR
AU  - Peter J. Olver
AU  - Juha Pohjanpelto
AU  - Francis Valiquette
TI  - On the Structure of Lie Pseudo-Groups
JO  - Symmetry, integrability and geometry: methods and applications
PY  - 2009
VL  - 5
UR  - http://geodesic.mathdoc.fr/item/SIGMA_2009_5_a76/
LA  - en
ID  - SIGMA_2009_5_a76
ER  - 
%0 Journal Article
%A Peter J. Olver
%A Juha Pohjanpelto
%A Francis Valiquette
%T On the Structure of Lie Pseudo-Groups
%J Symmetry, integrability and geometry: methods and applications
%D 2009
%V 5
%U http://geodesic.mathdoc.fr/item/SIGMA_2009_5_a76/
%G en
%F SIGMA_2009_5_a76
Peter J. Olver; Juha Pohjanpelto; Francis Valiquette. On the Structure of Lie Pseudo-Groups. Symmetry, integrability and geometry: methods and applications, Tome 5 (2009). http://geodesic.mathdoc.fr/item/SIGMA_2009_5_a76/

[1] Anderson I. M., The variational bicomplex, Utah State Technical Report, 1989; available at http://www.math.usu.edu/~fg-mp/

[2] Bryant R. L., Chern S. S., Gardner R. B., Goldschmidt H. L., Griffiths P. A., Exterior differential systems, Mathematical Sciences Research Institute Publications, 18, Springer-Verlag, New York, 1991 | MR | Zbl

[3] Cartan É., “Sur la structure des groupes infinis”, Oeuvres Complètes, Part II Vol. 2, Gauthier-Villars, Paris, 1953, 567–569 | MR

[4] Cartan É., “Sur la structure des groupes infinis de transformations”, Oeuvres Complètes, Part II, Vol. 2, Gauthier-Villars, Paris, 1953, 571–714 | MR

[5] Cartan É., “La structure des groupes infinis”, Oeuvres Complètes, Part II, Vol. 2, Gauthier-Villars, Paris, 1953, 1335–1384 | MR

[6] Chrastina J., The formal theory of differential equations, Masaryk University, Brno, 1998 | MR | Zbl

[7] Ehresmann C., “Introduction à la théorie des structures infinitésimales et des pseudo-groupes de Lie”, Colloques Internationaux du Centre National de la Recherche Scientifique, 52 (1953), 97–110 | MR | Zbl

[8] Kamran N., “Contributions to the study of the equivalence problem of Élie Cartan and its applications to partial and ordinary differential equations”, Acad. Roy. Belg. Cl. Sci. Mem. Collect. $8_\mathrm o(2)$, 45:7 (1989), 122 pages | MR

[9] Kuranishi M.,, “On the local theory of continuous infinite pseudo-groups. I”, Nagoya Math. J., 15 (1959), 225–260 | MR

[10] Kuranishi M., “On the local theory of continuous infinite pseudo-groups. II”, Nagoya Math. J., 19 (1961), 55–91 | MR | Zbl

[11] Lie S., “Über unendlichen kontinuierliche Gruppen”, Christ. Forh. Aar., 8 (1883), 1–47; see also Gesammelte Abhandlungen, Vol. 5, B. G. Teubner, Leipzig, 1924, 314–360

[12] Lie S., “Die Grundlagen für die Theorie der unendlichen kontinuierlichen Transformationsgruppen”, Leipzig. Ber., 43 (1891), 316–393; see also Gesammelte Abhandlungen, Vol. 6, B. G. Teubner, Leipzig, 1927, 300–364

[13] Lisle I. G., Reid G. J., “Cartan structure of infinite Lie pseudogroups”, Geometric Approaches to Differential Equations (Canberra, 1995), Austral. Math. Soc. Lect. Ser., 15, eds. P. J. Vassiliou and I. G. Lisle, Cambridge University Press, Cambridge, 2000, 116–145 | MR | Zbl

[14] Mackenzie K., Lie groupoids and Lie algebroids in differential geometry, London Mathematical Society Lecture Note Series, 124, Cambridge University Press, Cambridge, 1987 | MR | Zbl

[15] Olver P. J., Equivalence, invariants, and symmetry, Cambridge University Press, Cambridge, 1995 | MR | Zbl

[16] Olver P. J., Pohjanpelto J., “Maurer–Cartan equations and structure of Lie pseudo-groups”, Selecta Math. (N.S.), 11 (2005), 99–126 | DOI | MR | Zbl

[17] Olver P. J., Pohjanpelto J., “Moving frames for Lie pseudo-groups”, Canad. J. Math., 60 (2008), 1336–1386 | MR | Zbl

[18] Olver P. J., Pohjanpelto J., “Differential invariant algebras of Lie pseudo-groups”, Adv. Math., 222:5 (2009), 1746–1792 | DOI | MR | Zbl

[19] Pommaret J.-F., Systems of partial differential equations and Lie pseudogroups, Mathematics and Its Applications, 14, Gordon Breach Science Publishers, New York, 1978 | MR | Zbl

[20] Seiler W. M., Involution – the formal theory of differential equations and its applications in computer algebra and numerical analysis, Habilitation Thesis, Dept. of Mathematics, Universität Mannheim, 2002

[21] Singer I., Sternberg S., “The infinite groups of Lie and Cartan. I. The transitive groups”, J. Analyse Math., 15 (1965), 1–114 | DOI | MR | Zbl

[22] Stormark O., Lie's structural approach to PDE systems, Encyclopedia of Mathematics and Its Applications, 80, Cambridge University Press, Cambridge, 2000 | MR | Zbl

[23] Valiquette F., “Structure equations of Lie pseudo-groups”, J. Lie Theory, 18 (2008), 869–895 | MR | Zbl

[24] Valiquette F., Applications of moving frames to Lie pseudo-groups, Ph.D. Thesis, University of Minnesota, 2009

[25] Vessiot E., “Sur la théorie des groupes continues”, Ann. École Norm. Sup., 20 (1903), 411–451 | MR | Zbl