The Symmetrical $H_q$-Semiclassical Orthogonal Polynomials of Class One
Symmetry, integrability and geometry: methods and applications, Tome 5 (2009) Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We investigate the quadratic decomposition and duality to classify symmetrical $H_q$-semiclassical orthogonal $q$-polynomials of class one where $H_q$ is the Hahn's operator. For any canonical situation, the recurrence coefficients, the $q$-analog of the distributional equation of Pearson type, the moments and integral or discrete representations are given.
Keywords: quadratic decomposition of symmetrical orthogonal polynomials; semiclassical form; integral representations; $q$-difference operator; $q$-series representations; the $q$-analog of the distributional equation of Pearson type.
@article{SIGMA_2009_5_a75,
     author = {Abdallah Ghressi and Lotfi Kh\'eriji},
     title = {The {Symmetrical} $H_q${-Semiclassical} {Orthogonal} {Polynomials} of {Class} {One}},
     journal = {Symmetry, integrability and geometry: methods and applications},
     year = {2009},
     volume = {5},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SIGMA_2009_5_a75/}
}
TY  - JOUR
AU  - Abdallah Ghressi
AU  - Lotfi Khériji
TI  - The Symmetrical $H_q$-Semiclassical Orthogonal Polynomials of Class One
JO  - Symmetry, integrability and geometry: methods and applications
PY  - 2009
VL  - 5
UR  - http://geodesic.mathdoc.fr/item/SIGMA_2009_5_a75/
LA  - en
ID  - SIGMA_2009_5_a75
ER  - 
%0 Journal Article
%A Abdallah Ghressi
%A Lotfi Khériji
%T The Symmetrical $H_q$-Semiclassical Orthogonal Polynomials of Class One
%J Symmetry, integrability and geometry: methods and applications
%D 2009
%V 5
%U http://geodesic.mathdoc.fr/item/SIGMA_2009_5_a75/
%G en
%F SIGMA_2009_5_a75
Abdallah Ghressi; Lotfi Khériji. The Symmetrical $H_q$-Semiclassical Orthogonal Polynomials of Class One. Symmetry, integrability and geometry: methods and applications, Tome 5 (2009). http://geodesic.mathdoc.fr/item/SIGMA_2009_5_a75/

[1] Alaya J., Maroni P., “Symmetric Laguerre–Hahn forms of class $s=1$”, Integral Transform. Spec. Funct., 2 (1996), 301–320 | DOI | MR

[2] Al-Salam W. A., Verma A., “On an orthogonal polynomial set”, Nederl. Akad. Wetensch. Indag. Math., 44 (1982), 335–340 | MR | Zbl

[3] Álvarez-Nodarse R., Atakishiyeva M. K., Atakishiyev N. M., “A $q$-extension of the generalized Hermite polynomials with the continuous orthogonality property on $\mathbb R$”, Int. J. Pure Appl. Math., 10 (2004), 335–347 | MR | Zbl

[4] Andrews G. E., $q$-series: their development and application in analysis, number theory, combinatorics, physics, and computer algebra, Amer. Math. Soc., Providence, RI, 1986 | MR

[5] Arvesú J., Atia M.J., Marcellán F., “On semiclassical linear functionals: the symmetric companion”, Commun. Anal. Theory Contin. Fract., 10 (2002), 13–29 | MR

[6] Belmehdi S., “On semi-classical linear functionals of class $s=1$. Classification and integral representations”, Indag. Math. (N.S.), 3:3 (1992), 253–275 | DOI | MR | Zbl

[7] Ciccoli N., Koelink E., Koornwinder T. H., “$q$-Laguerre polynomials and big $q$-Bessel functions and their orthogonality relations”, Methods Appl. Anal., 6 (1999), 109–127 | MR | Zbl

[8] Chihara T. S., An introduction to orthogonal polynomials, Mathematics and its Applications, 13, Gordon and Breach Science Publishers, New York – London – Paris, 1978 | MR | Zbl

[9] Chihara T. S., “Orthogonal polynomials with Brenke type generating function”, Duke. Math. J., 35 (1968), 505–517 | DOI | MR | Zbl

[10] Chihara T. S., “Orthogonality relations for a class of Brenke polynomials”, Duke. Math. J., 38 (1971), 599–603 | DOI | MR | Zbl

[11] Gasper G., Rahman M., Basic hypergeometric series, Encyclopedia of Mathematics and Its Applications, 35, Cambridge University Press, Cambridge, 1990 | MR | Zbl

[12] Ghressi A., Khériji L., “Orthogonal $q$-polynomials related to perturbed linear form”, Appl. Math. E-Notes, 7 (2007), 111–120 | MR | Zbl

[13] Ghressi A., Khériji L., “On the $q$-analogue of Dunkl operator and its Appell classical orthogonal polynomials”, Int. J. Pure Appl. Math., 39 (2007), 1–16 | MR | Zbl

[14] Ghressi A., Khériji L., “Some new results about a symmetric $D$-semiclassical linear form of class one”, Taiwanese J. Math., 11 (2007), 371–382 | MR | Zbl

[15] Ghressi A., Khériji L., “A new characterization of the generalized Hermite linear form”, Bull. Belg. Math. Soc. Simon Stevin, 15 (2008), 561–567 | MR | Zbl

[16] Hahn W., “Über Orthogonalpolynome, die $q$-Differenzengleichungen genügen”, Math. Nachr., 2 (1949), 4–34 | DOI | MR | Zbl

[17] Heine E., “Untersuchungen über die Reine $1+\frac{(1-q^\alpha)(1-q^\beta)}{(1-q)(1-q^\gamma)}\cdot x+ \frac{(1-q^\alpha)(1-q^{\alpha+1})(1-q^\beta)(1-q^{\beta+1})}{(1-q)(1-q^2) (1-q^\gamma)(1-q^{\gamma+1})}\cdot x^2$ – siehe unten”, J. Reine Angew. Math., 34 (1847), 285–328 | Zbl

[18] Ismail M. E. H., “Difference equations and quantized discriminants for $q$-orthogonal polynomials”, Adv. in Appl. Math., 30 (2003), 562–589 | DOI | MR | Zbl

[19] Kamech O. F., Mejri M., “The product of a regular form by a polynomial generalized: the case $xu=\lambda x^2v$”, Bull. Belg. Math. Soc. Simon Stevin, 15 (2008), 311–334 | MR | Zbl

[20] Khériji L., Maroni P., “The $H_q$-classical orthogonal polynomials”, Acta. Appl. Math., 71 (2002), 49–115 | DOI | MR | Zbl

[21] Khériji L., “An introduction to the $H_q$-semiclassical orthogonal polynomials”, Methods Appl. Anal., 10 (2003), 387–411 | MR

[22] Koornwinder T. H., “The structure relation for Askey–Wilson polynomials”, J. Comput. Appl. Math., 207 (2007), 214–226 ; math.CA/0601303 | DOI | MR | Zbl

[23] Kwon K. H., Lee D. W., Park S. B., “On $\delta$-semiclassical orthogonal polynomials”, Bull. Korean Math. Soc., 34 (1997), 63–79 | MR | Zbl

[24] Maroni P., “Une théorie algébrique des polynômes orthogonaux. Application aux polynômes orthogonaux semi-classique”, Orthogonal Polynomials and their Applications (Erice, 1990), IMACS Ann. Comput. Appl. Math., 9, eds. C. Brezinski et al., Baltzer, Basel, 1991, 95–130 | MR | Zbl

[25] Maroni P., “Sur la décomposition quadratique d'une suite de polynôme orthogonaux. I”, Riv. Mat. Pura Appl., 6 (1990), 19–53 | MR | Zbl

[26] Maroni P., “Sur la suite de polynômes orthogonaux associées à la forme $u=\delta_c+\lambda (x-c)^{-1}L$”, Period. Math. Hungar., 21 (1990), 223–248 | DOI | MR | Zbl

[27] Maroni P., Nicolau I., “On the inverse problem of the product of a form by a polynomial: the cubic case”, Appl. Numer. Math., 45 (2003), 419–451 | DOI | MR | Zbl

[28] Maroni P., Tounsi M. I., “The second-order self-associated orthogonal sequences”, J. Appl. Math., 2004:2 (2004), 137–167 | DOI | MR | Zbl

[29] Maroni P., Mejri M., “The $I_{(q,\omega)}$-classical orthogonal polynomials”, Appl. Numer. Math., 43 (2002), 423–458 | DOI | MR | Zbl

[30] Maroni P., Mejri M., “The symmetric $D_\omega$-semiclassical orthogonal polynomials of class one”, Numer. Algorithms., 49 (2008), 251–282 | DOI | MR | Zbl

[31] Medem J. C., “A family of singular semi-classical functionals”, Indag. Math. (N.S.), 13 (2002), 351–362 | DOI | MR | Zbl

[32] Medem J. C., Álvarez-Nodarse R., Marcellan F., “On the $q$-polynomials: a distributional study”, J. Comput. Appl. Math., 135 (2001), 157–196 | DOI | MR | Zbl

[33] Mejri M., “$q$-extension of some symmetrical and semi-classical orthogonal polynomials of class one”, Appl. Anal. Discrete Math., 3 (2009), 78–87 | DOI | MR | Zbl

[34] Sghaier M., Alaya J.,, “Semiclassical forms of class $s=2$: the symmetric case when $\Phi(0)=0$”, Methods Appl. Anal., 13 (2006), 387–410 | MR

[35] Shohat J. A., “A differential equation for orthogonal polynomials”, Duke Math. J., 5 (1939), 401–407 | DOI | MR