@article{SIGMA_2009_5_a72,
author = {Toufik Mansour and Matthias Schork},
title = {On {Linear} {Differential} {Equations} {Involving} {a~Para-Grassmann} {Variable}},
journal = {Symmetry, integrability and geometry: methods and applications},
year = {2009},
volume = {5},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SIGMA_2009_5_a72/}
}
Toufik Mansour; Matthias Schork. On Linear Differential Equations Involving a Para-Grassmann Variable. Symmetry, integrability and geometry: methods and applications, Tome 5 (2009). http://geodesic.mathdoc.fr/item/SIGMA_2009_5_a72/
[1] Schwinger J., “The theory of quantized fields. IV”, Phys. Rev., 92 (1953), 1283–1299 | DOI | MR
[2] Martin J. L., “The Feynman principle for a Fermi system”, Proc. Roy. Soc. London. Ser. A, 251 (1959), 543–549 | DOI | MR | Zbl
[3] Berezin F., The method of second quantization, Pure and Applied Physics, 24, Academic Press, New York – London, 1966 | MR | Zbl
[4] Kane G., Shifman M. (ed.), The supersymmetric world. The beginnings of the theory, World Scientific Publishing Co., Inc., River Edge, NJ, 2000 | MR
[5] Wess J., Bagger J., Supersymmetry and supergravity, 2nd ed., Princeton Series in Physics, Princeton University Press, Princeton, 1992 | MR
[6] Freund P., Introduction to supersymmetry and supergravity, 2nd ed., World Scientific Publishing Co., Inc., Teaneck, NJ, 1990 | MR
[7] DeWitt B., Supermanifolds, 2nd ed., Cambridge Monographs on Mathematical Physics, Cambridge University Press, Cambridge, 1992 | MR | Zbl
[8] Manin Y. I., Gauge field theory and complex geometry, Springer-Verlag, Berlin, 1988 | MR
[9] Rogers A., Supermanifolds. Theory and applications, World Scientific Publishing Co. Pte. Ltd., Hackensack, NJ, 2007 | MR
[10] Green H. S., “A generalized method of field quantization”, Phys. Rev., 90 (1953), 270–273 | DOI | MR | Zbl
[11] Kalnay A. J., “A note on Grassmann algebras”, Rep. Math. Phys., 9 (1976), 9–13 | DOI | Zbl
[12] Omote M., Kamefuchi S., “Para-Grassmann algebras and para-Fermi systems”, Lett. Nuovo Cimento, 24 (1979), 345–350 | DOI | MR
[13] Omote M., Kamefuchi S., “Parafields and supergroup transformations”, Nuovo Cimento A, 50 (1980), 21–40 | DOI | MR
[14] Ohnuki Y., Kamefuchi S., “Para-Grassmann algebras with applications to para-Fermi systems”, J. Math. Phys., 21 (1980), 609–616 | DOI | MR | Zbl
[15] Ohnuki Y., Kamefuchi S., Quantum field theory and parastatistics, Springer-Verlag, Berlin, 1982 | MR | Zbl
[16] Gershun V. D., Tkach V. I., “Para-Grassmann variables and description of massive particles with spin equalling one”, Ukr. Fiz. Zh., 29 (1984), 1620–1627 (in Russian)
[17] Zheltukhin A. A., “Para-Grassmann extension of the Neveu–Schwarz–Ramond algebra”, Theoret. and Math. Phys., 71 (1987), 491–496 | DOI | MR
[18] Rubakov V. A., Spirodonov V. P., “Parasupersymmetric quantum mechanics”, Modern Phys. Lett. A, 3 (1988), 1337–1347 | DOI | MR
[19] Yamaleev R. M., Elements of cubic quantum mechanics, P2-88-147, JINR Comm., Dubna, 1988 (in Russian) | MR
[20] Durand S., Floreanini R., Mayrand M., Vinet L., “Conformal parasuperalgebras and their realizations on the line”, Phys. Lett. B, 233 (1989), 158–162 | DOI | MR
[21] Durand S., Mayrand M., Spirodonov V. P., Vinet L., “Higher order parasupersymmetric quantum mechanics”, Modern Phys. Lett. A, 6 (1991), 3163–3170 | DOI | MR
[22] Fleury N., Rausch de Traubenberg M., Yamaleev R. M., “Matricial representations of rational powers of operators and para-Grassmann extension of quantum mechanics”, Internat. J. Modern Phys. A, 10 (1995), 1269–1280 | DOI | MR | Zbl
[23] Yamaleev R. M., “Fractional power of momenta and para-Grassmann extension of Pauli equation”, Adv. Appl. Clifford Algebras, 7, suppl. (1997), 279–288 | MR
[24] Yamaleev R. M., “Parafermionic extensions of Pauli and Dirac equations”, Hadronic J., 26 (2003), 247–258 | MR | Zbl
[25] Durand S., “Factional supersymmetry and quantum mechanics”, Phys. Lett. B, 312 (1993), 115–120 ; hep-th/9305128 | DOI | MR
[26] Durand S., “Extended fractional supersymmetric quantum mechanics”, Modern Phys. Lett. A, 8 (1993), 1795–1804 ; hep-th/9305129 | DOI | MR | Zbl
[27] Durand S., “Fractional superspace formulation of generalized mechanics”, Modern Phys. Lett. A, 8 (1993), 2323–2334 ; hep-th/9305130 | DOI | MR | Zbl
[28] Azcárraga J. A., Macfarlane A. J., “Group theoretical foundations of fractional supersymmetry”, J. Math. Phys., 37 (1996), 1115–1127 ; hep-th/9506177 | DOI | MR | Zbl
[29] Dunne R. S., Macfarlane A. J., de Azcárraga J. A., Pérez Bueno J. C., “Geometrical foundations of fractional supersymmetry”, Internat. J. Modern Phys. A, 12 (1997), 3275–3305 ; hep-th/9610087 | DOI | MR | Zbl
[30] Ahn C., Bernard D., LeClair A., “Fractional supersymmetries in perturbed coset CFTs and integrable soliton theory”, Nuclear Phys. B, 346 (1990), 409–439 | DOI | MR
[31] Saidi E. H., Sedra M. B., Zerouaoui J., “On $D=2(1/3,1/3)$ supersymmetric theories. I”, Classical Quantum Gravity, 12 (1995), 1567–1580 | DOI | MR | Zbl
[32] Saidi E. H., Sedra M. B., Zerouaoui J., “On $D=2(1/3,1/3)$ supersymmetric theories. II”, Classical Quantum Gravity, 12 (1995), 2705–2714 | DOI | MR | Zbl
[33] Fleury N., Rausch de Traubenberg M., “Local fractional supersymmetry for alternative statistics”, Modern Phys. Lett. A, 11 (1996), 899–913 ; hep-th/9510108 | DOI | MR | Zbl
[34] Perez A., Rausch de Traubenberg M., Simon P., “$2D$-fractional supersymmetry and conformal field theory for alternative statistics”, Nuclear Phys. B, 482 (1996), 325–344 ; hep-th/9603149 | DOI | MR | Zbl
[35] Rausch de Traubenberg M., Simon P., “$2D$-fractional supersymmetry and conformal field theory for alternative statistics”, Nuclear Phys. B, 517 (1997), 485–505 ; hep-th/9606188 | MR
[36] Kheirandish F., Khorrami M., “Two-dimensional fractional supersymmetric conformal field theories and the two point functions”, Internat. J. Modern Phys. A, 16 (2001), 2165–2173 ; hep-th/0004154 | DOI | MR | Zbl
[37] Kheirandish F., Khorrami M., “Logarithmic two-dimensional spin 1/3 fractional supersymmetric conformal field theories and the two point functions”, Eur. Phys. J. C Part. Fields, 18 (2001), 795–797 ; hep-th/0007013 | DOI | MR | Zbl
[38] Kheirandish F., Khorrami M., “Two-dimensional fractional supersymmetric conformal and logarithmic conformal field theories and the two point functions”, Eur. Phys. J. C Part. Fields, 20 (2001), 593–597 ; hep-th/0007073 | DOI | MR
[39] Sedra M. B., Zerouaoui J., Heterotic $D=2(1/3,0)$ SUSY models, arXiv:0903.1316 | MR
[40] Durand S., “Fractional superspace formulation of generalized super-Virasoro algebras”, Modern Phys. Lett. A, 7 (1992), 2905–2911 ; hep-th/9205086 | DOI | MR | Zbl
[41] Filippov A. T., Isaev A. P., Kurdikov A. B., “Para-Grassmann extensions of the Virasoro algebra”, Internat. J. Modern Phys. A, 8 (1993), 4973–5003 ; hep-th/9212157 | DOI | MR | Zbl
[42] Filippov A. T., Isaev A. P., Kurdikov A. B., “Para-Grassmann analysis and quantum groups”, Modern Phys. Lett. A, 7 (1992), 2129–2141 ; hep-th/9204089 | DOI | MR | Zbl
[43] Rausch de Traubenberg M., “Clifford algebras of polynomials, generalized Grassmann algebras and $q$-deformed Heisenberg algebras”, Adv. Appl. Clifford Algebras, 4 (1994), 131–144 ; hep-th/9404057 | MR | Zbl
[44] Abdesselam B., Beckers J., Chakrabarti A., Debergh N., “On a deformation of $sl(2)$ with para-Grassmannian variables”, J. Phys. A: Math. Gen., 29 (1996), 6729–6736 ; q-alg/9507008 | DOI | MR | Zbl
[45] Isaev A. P., “Para-Grassmann integral, discrete systems and quantum groups”, Internat. J. Modern Phys. A, 12 (1997), 201–206 ; q-alg/9609030 | DOI | MR | Zbl
[46] Plyushchay M. A., “$R$-deformed Heisenberg algebra”, Modern Phys. Lett. A, 11 (1996), 2953–2964 ; hep-th/9701065 | DOI | MR | Zbl
[47] Plyushchay M. A., “Deformed Heisenberg algebra with reflection”, Nuclear Phys. B, 491 (1997), 619–634 ; hep-th/9701091 | DOI | MR | Zbl
[48] Alvarez-Moraga N., “Coherent and squeezed states of quantum Heisenberg algebras”, J. Phys. A: Math. Gen., 38 (2005), 2375–2398 ; math-ph/0503055 | DOI | MR | Zbl
[49] Cabra D. C., Moreno E. F., Tanasa A., “Para-Grassmann variables and coherent states”, SIGMA, 2 (2006), 087, 8 pp., ages ; hep-th/0609217 | MR | Zbl
[50] Rausch de Traubenberg M., Fleury N., “Beyond spinors”, Leite Lopes Festschrift, eds. N. Fleury et al., World Scientific Publishing Co., Singapore, 1988, 79–101 | MR
[51] Filippov A. T., Isaev A. P., Kurdikov A. B., “Para-Grassmann differential calculus”, Theoret. and Math. Phys., 94 (1993), 150–165 ; hep-th/9210075 | DOI | MR | Zbl
[52] Cugliandolo L. F., Lozano G. S., Moreno E. F., Schaposnik F. A., “A note on Gaussian integrals over para-Grassmann variables”, Internat. J. Modern Phys. A, 19 (2004), 1705–1714 ; hep-th/0209172 | DOI | MR | Zbl
[53] Schork M., “Algebraical, combinatorial and analytical properties of paragrassmann variables”, Internat. J. Modern Phys. A, 20 (2005), 4797–4819 | DOI | MR | Zbl
[54] Rausch de Traubenberg M., Clifford algebras, supersymmetry and $Z(n)$ symmetries: applications in field theory, hep-th/9802141
[55] van der Put M., Singer M. F., Galois theory of linear differential equations, Springer-Verlag, Berlin, 2003 | MR
[56] Miles E. P., “Generalized Fibonacci numbers and associated matrices”, Amer. Math. Monthly, 67 (1960), 745–752 | DOI | MR | Zbl
[57] Levesque C., “On $m$th order linear recurrences”, Fibonacci Quart., 23 (1985), 290–293 | MR | Zbl
[58] Lee G.-Y., Lee S.-G., Kim J.-S., Shin H.-G., “The Binet formula and representations of $k$-generalized Fibonacci numbers”, Fibonacci Quart., 39 (2001), 158–164 | MR | Zbl