@article{SIGMA_2009_5_a71,
author = {Alan S. McRae},
title = {Clifford {Fibrations} and {Possible} {Kinematics}},
journal = {Symmetry, integrability and geometry: methods and applications},
year = {2009},
volume = {5},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SIGMA_2009_5_a71/}
}
Alan S. McRae. Clifford Fibrations and Possible Kinematics. Symmetry, integrability and geometry: methods and applications, Tome 5 (2009). http://geodesic.mathdoc.fr/item/SIGMA_2009_5_a71/
[1] Bacry H., Levy-Leblond J.-M., “Possible kinematics”, J. Math. Phys., 9 (1967), 1605–1614 | DOI | MR
[2] Ballesteros A., Herranz F. J., “Superintegrability on three-dimensional Riemannian and relativistic spaces of constant curvature”, SIGMA, 2 (2006), 010, 22 pp., ages ; math-ph/0512084 | MR | Zbl
[3] Harkin A. A., Harkin J. B., “Geometry of generalized complex numbers”, Math. Mag., 77 (2004), 118–129 | MR | Zbl
[4] Herranz F. J., Ortega R., Santander M., “Trigonometry of spacetimes: a new self-dual approach to a curvature/signature (in)dependent trigonometry”, J. Phys. A: Math. Gen., 33 (2000), 4525–4551 ; math-ph/9910041 | DOI | MR | Zbl
[5] Herranz F. J., Santander M., “Homogeneous phase spaces: the Cayley–Klein framerwork”, Geometría y Física (Madrid, Real Academia de Ciencias, 1996), Mem. Real Acad. Cienc. Exact. Fis. Natur. Madrid, 32, eds. J. F. Cariñena et al., 1998, 59–84 ; physics/9702030 | MR | Zbl
[6] Herranz F. J., Santander M., “Conformal symmetries of spacetimes”, J. Phys. A: Math. Gen., 35 (2002), 6601–6618 ; math-ph/0110019 | DOI | MR | Zbl
[7] McRae A. S., “The Gauss–Bonnet theorem for Cayley–Klein geometries of dimension two”, New York J. Math., 12 (2006), 143–155 | MR | Zbl
[8] McRae A. S., “Clifford algebras and possible kinematics”, SIGMA, 3 (2007), 079, 29 pp., ages ; arXiv:0707.2869 | MR | Zbl
[9] Penrose R., The road to reality. A complete guide to the laws of the universe, Alfred A. Knopf, Inc., New York, 2005 | MR
[10] Urbantke H. K., “The Hopf fibration – seven times in physics”, J. Geom. Phys., 46 (2003), 125–150 | DOI | MR | Zbl
[11] Van der Waerden B. L., Algebra, Vol. 2, Springer-Verlag, New York, 1991
[12] Yaglom I. M., A simple non-Euclidean geometry and its physical basis: an elementary account of Galilean geometry and the Galilean principle of relativity Heidelberg Science Library, Translated from the Russian by Abe Shenitzer, With the editorial assistance of Basil Gordon, Springer-Verlag, New York – Heidelberg, 1979 | MR | Zbl