@article{SIGMA_2009_5_a70,
author = {Mohamed Ali Mourou},
title = {Inversion of the {Dual} {Dunkl{\textendash}Sonine} {Transform} on $\mathbb R$ {Using} {Dunkl} {Wavelets}},
journal = {Symmetry, integrability and geometry: methods and applications},
year = {2009},
volume = {5},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SIGMA_2009_5_a70/}
}
Mohamed Ali Mourou. Inversion of the Dual Dunkl–Sonine Transform on $\mathbb R$ Using Dunkl Wavelets. Symmetry, integrability and geometry: methods and applications, Tome 5 (2009). http://geodesic.mathdoc.fr/item/SIGMA_2009_5_a70/
[1] de Jeu M. F. E., “The Dunkl transform”, Invent. Math., 113 (1993), 147–162 | DOI | MR | Zbl
[2] Dunkl C.F.,, “Differential-difference operators associated with reflections groups”, Trans. Amer. Math. Soc., 311 (1989), 167–183 | DOI | MR | Zbl
[3] Dunkl C. F., “Integral kernels with reflection group invariance”, Canad. J. Math., 43 (1991), 1213–1227 | MR | Zbl
[4] Dunkl C. F., “Hankel transforms associated to finite reflection groups”, Contemp. Math., 138, 1992, 123–138 | MR | Zbl
[5] Jouini A., “Dunkl wavelets and applications to inversion of the Dunkl intertwining operator and its dual”, Int. J. Math. Math. Sci., 6 (2004), 285–293 | DOI | MR
[6] Kamefuchi S., Ohnuki Y., Quantum field theory and parastatistics, Springer-Verlag, Berlin, 1982 | MR | Zbl
[7] Mourou M. A., Trimèche K., “Calderón's formula associated with a differential operator on $(0,\infty)$ and inversion of the generalized Abel transform”, J. Fourier Anal. Appl., 4 (1998), 229–245 | DOI | MR | Zbl
[8] Mourou M. A., Trimèche K.,, “Inversion of the Weyl integral transform and the Radon transform on $\mathbb R^n$ using generalized wavelets”, Monatsh. Math., 126 (1998), 73–83 | DOI | MR | Zbl
[9] Mourou M. A., Trimèche K., “Calderon's reproducing formula related to the Dunkl operator on the real line”, Monatsh. Math., 136 (2002), 47–65 | DOI | MR | Zbl
[10] Mourou M. A., Trimèche K., “Transmutation operators and Paley–Wiener associated with a singular differential-difference operator on the real line”, Anal. Appl. (Singap.), 1 (2003), 43–70 | DOI | MR | Zbl
[11] Rosenblum M., “Generalized Hermite polynomials and the Bose-like oscillator calculus”, Nonselfadjoint Operators and Related Topics (Beer Sheva, 1992), Oper. Theory Adv. Appl., 73, Birkhäuser, Basel, 1994, 369–396 ; math.CA/9307224 | MR | Zbl
[12] Rösler M., “Bessel-type signed hypergroups on $\mathbb R$”, Probability Measures on Groups and Related Structures, XI (Oberwolfach, 1994), eds. H. Heyer and A. Mukherjea, World Sci. Publ., River Edge, NJ, 1995, 292–304 | MR | Zbl
[13] Soltani F., “$L^p$-Fourier multipliers for the Dunkl operator on the real line”, J. Funct. Anal., 209 (2004), 16–35 | DOI | MR | Zbl
[14] Soltani F., “Sonine transform associated to the Dunkl kernel on the real line”, SIGMA, 4 (2008), 092, 14 pp., ages ; arXiv:0812.4666 | MR | Zbl
[15] Xu Y., “An integral formula for generalized Gegenbauer polynomials and Jacobi polynomials”, Adv. in Appl. Math., 29 (2002), 328–343 | DOI | MR | Zbl
[16] Yang L. M., “A note on the quantum rule of the harmonic oscillator”, Phys. Rev., 84 (1951), 788–790 | DOI | MR | Zbl