On Brane Solutions Related to Non-Singular Kac–Moody Algebras
Symmetry, integrability and geometry: methods and applications, Tome 5 (2009) Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

A multidimensional gravitational model containing scalar fields and antisymmetric forms is considered. The manifold is chosen in the form $M=M_0\times M_1\times\cdots\times M_n$, where $M_i$ are Einstein spaces ($i\geq1$). The sigma-model approach and exact solutions with intersecting composite branes (e.g. solutions with harmonic functions, $S$-brane and black brane ones) with intersection rules related to non-singular Kac–Moody (KM) algebras (e.g. hyperbolic ones) are reviewed. Some examples of solutions, e.g. corresponding to hyperbolic KM algebras: $H_2(q,q)$, $AE_3$, $HA_2^{(1)}$, $E_{10}$ and Lorentzian KM algebra $P_{10}$ are presented.
Keywords: Kac–Moody algebras; $S$-branes; black branes; sigma-model; Toda chains.
@article{SIGMA_2009_5_a69,
     author = {Vladimir D. Ivashchuk and Vitaly N. Melnikov},
     title = {On {Brane} {Solutions} {Related} to {Non-Singular} {Kac{\textendash}Moody} {Algebras}},
     journal = {Symmetry, integrability and geometry: methods and applications},
     year = {2009},
     volume = {5},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SIGMA_2009_5_a69/}
}
TY  - JOUR
AU  - Vladimir D. Ivashchuk
AU  - Vitaly N. Melnikov
TI  - On Brane Solutions Related to Non-Singular Kac–Moody Algebras
JO  - Symmetry, integrability and geometry: methods and applications
PY  - 2009
VL  - 5
UR  - http://geodesic.mathdoc.fr/item/SIGMA_2009_5_a69/
LA  - en
ID  - SIGMA_2009_5_a69
ER  - 
%0 Journal Article
%A Vladimir D. Ivashchuk
%A Vitaly N. Melnikov
%T On Brane Solutions Related to Non-Singular Kac–Moody Algebras
%J Symmetry, integrability and geometry: methods and applications
%D 2009
%V 5
%U http://geodesic.mathdoc.fr/item/SIGMA_2009_5_a69/
%G en
%F SIGMA_2009_5_a69
Vladimir D. Ivashchuk; Vitaly N. Melnikov. On Brane Solutions Related to Non-Singular Kac–Moody Algebras. Symmetry, integrability and geometry: methods and applications, Tome 5 (2009). http://geodesic.mathdoc.fr/item/SIGMA_2009_5_a69/

[1] Kac V. G., “Simple irreducible graded Lie algebras of finite growth”, Izv. Akad. Nauk SSSR Ser. Mat., 32 (1968), 1323–1367 | MR | Zbl

[2] Moody R. V., “A new class of Lie algebras”, J. Algebra, 10 (1968), 211–230 | DOI | MR

[3] Kac V. G., Infinite-dimensional Lie algebras, 3rd ed., Cambridge University Press, Cambridge, 1990 | MR

[4] Fuchs J., Schweigert C., Symmetries, Lie algebras and representations. A graduate course for physicists, Cambridge Monographs on Mathematical Physics, Cambridge University Press, Cambridge, 1997 | MR | Zbl

[5] Nikulin V. V., “On the classification of hyperbolic root systems of rank three”, Proc. Steklov Inst. Math., 230, no. 3, 2000, 1–241 ; , , alg-geom/9711032alg-geom/9712033math.AG/9905150 | MR

[6] Henneaux M., Persson D., Spindel P., “Spacelike singularities and hidden symmetries of gravity”, Living Rev. Relativity, 11 (2008), lrr-2008-1, 232 pp., ages ; arXiv:0710.1818 | Zbl

[7] Green M. B., Schwarz J. H., Witten E., Superstring theory, Cambridge University Press, Cambridge, 1987

[8] Saclioglu C., “Dynkin diagram for hyperbolic Kac–Moody algebras”, J. Phys. A: Math. Gen., 22:18 (1989), 3753–3769 | DOI | MR | Zbl

[9] de Buyl S., Schomblond C., “Hyperbolic Kac–Moody algebras and Einstein biliards”, J. Math. Phys., 45 (2004), 4464–4492 ; hep-th/0403285 | DOI | MR | Zbl

[10] Feingold A., Frenkel I. B., “A hyperbolic Kac–Moody Algebra and the theory of Siegel modular forms of genus 2”, Math. Ann., 263 (1983), 87–144 | DOI | MR | Zbl

[11] Julia B., “Kac–Moody symmetry of gravitation and supergravity theories”, Applications of Group Theory in Physics and Mathematical Physics (Chicago, 1982), Lectures in Appl. Math., 21, Amer. Math. Soc., Providence, RI, 1985, 355–373 | MR

[12] Mizoguchi S., “$E_{10}$ symmetry in one-dimensional supergravity”, Nuclear Phys. B, 528 (1998), 238–264 ; hep-th/9703160 | DOI | MR | Zbl

[13] Nicolai H., “A hyperbolic Lie algebra from supergravity”, Phys. Lett. B, 276 (1992), 333–340 | DOI | MR

[14] Moore G., “String duality, automorphic forms, and generalized Kac–Moody algebras”, String Theory, Gauge Theory and Quantum Gravity (Trieste, 1997), Nuclear Phys. Proc. Suppl., 67, 1998, 56–67 ; hep-th/9710198 | MR | Zbl

[15] Damour T., Henneaux M., “$E_{10}$, $BE_{10}$ and arithmetical chaos in superstring cosmology”, Phys. Rev. Lett., 86 (2001), 4749–4752 ; hep-th/0012172 | DOI | MR

[16] Belinskii V. A., Lifshitz E. M., Khalatnikov I. M., “Oscillating regime of approaching to peculiar point in relyativistic cosmology”, Usp. Fiz. Nauk, 102 (1970), 463–500 (in Russian) ; Belinskii V. A., Lifshitz E. M., Khalatnikov I. M., “A general solution of the Einstein equations with a time singularity”, Adv. Phys., 31 (1982), 639–667 | DOI

[17] Damour T., Henneaux M., “Chaos in superstring cosmology”, Phys. Rev. Lett., 85 (2000), 920–923 ; hep-th/0003139 | DOI | MR | Zbl

[18] Damour T., Henneaux M., Julia B., Nicolai H., “Hyperbolic Kac–Moody algebras and chaos in Kaluza-Klein models”, Phys. Lett. B, 509 (2001), 323–330 ; hep-th/0103094 | DOI | MR | Zbl

[19] Chitre D. M., Investigations of vanishing of a horizon for Bianchy type IX (the Mixmaster) universe, Ph.D. Thesis, University of Maryland, 1972

[20] Russian Phys. J., 37 (1994), 1102–1106 | DOI | MR | Zbl

[21] JETP Lett., 60 (1994), 235–239

[22] Ivashchuk V. D., Melnikov V. N., “Billiard representation for multidimensional cosmology with multicomponent perfect fluid near the singularity”, Classical Quantum Gravity, 12 (1995), 809–826 ; gr-qc/9407028 | DOI | MR | Zbl

[23] Ivashchuk V. D., Melnikov V. N., “Billiard representation for pseudo-Euclidean Toda-like systems of cosmological origin”, Regul. Chaotic Dyn., 1:2 (1996), 23–35 | MR | Zbl

[24] Ivashchuk V. D., Melnikov V. N., “Billiard representation for multidimensional cosmology with intersecting $p$-branes near the singularity”, J. Math. Phys., 41 (2000), 6341–6363 ; hep-th/9904077 | DOI | MR | Zbl

[25] Damour T., Henneaux M., Nicolai H., “Cosmological billiards”, Classical Quantum Gravity, 20 (2003), R145–R200 ; hep-th/0212256 | DOI | MR | Zbl

[26] Ivashchuk V. D., Melnikov V. N., “On billiard approach in multidimensional cosmological models”, Gravit. Cosmol., 15 (2009), 49–58 ; arXiv:0811.2786 | DOI | MR | Zbl

[27] Cremmer E., Julia B., Scherk J., “Supergravity theory in eleven-dimensions”, Phys. Lett. B, 76 (1978), 409–412 | DOI

[28] Hull C. M., Townsend P. K., “Unity of superstring dualities”, Nuclear Phys. B, 438 (1995), 109–137 ; hep-th/9410167 | DOI | MR | Zbl

[29] Witten E., “String theory dynamics in various dimensions”, Nuclear Phys. B, 443 (1995), 85–126 ; hep-th/9503124 | DOI | MR | Zbl

[30] Damour T., Henneaux M., Nicolai H., “$E_{10}$ and a small tension expansion of M-theory”, Phys. Rev. Lett., 89 (2002), 221601, 4 pp., ages ; hep-th/0207267 | DOI | MR

[31] Gaberdiel M. R., Olive D. I., West P. C., “A class of Lorentzian Kac–Moody algebras”, Nuclear Phys. B, 645 (2002), 403–437 ; hep-th/0205068 | DOI | MR | Zbl

[32] West P., “$E_{11}$ and $M$ theory”, Classical Quantum Gravity, 18 (2001), 4443–4460 ; hep-th/0104081 | DOI | MR | Zbl

[33] Schnakenburg I., West P., “Kac–Moody symmetries of IIB supergravity”, Phys. Lett. B, 517 (2001), 421–428 ; hep-th/0107181 | DOI | MR | Zbl

[34] Lambert N. D., West P. C., “Coset symmetries in dimensionally reduced bosonic string theory”, Nuclear Phys. B, 615 (2001), 117–132 ; hep-th/0107209 | DOI | MR | Zbl

[35] Englert F., Houart L., Taormina A., West P., “The symmetry of M-theories”, J. High Energy Phys., 0309:9 (2003), 020, 39 pp., ages ; hep-th/0304206 | DOI | MR

[36] Englert F., Houart L., West P., “Intersection rules, dynamics and symmetries”, J. High Energy Phys., 2003:8 (2003), 025, 26 pp., ages ; hep-th/0307024 | DOI | MR

[37] Ivashchuk V. D., Melnikov V. N., “Majumdar–Papapetrou-type solutions in sigma-model and intersecting $p$-branes”, Classical Quantum Gravity, 16 (1999), 849–869 ; hep-th/9802121 | DOI | MR | Zbl

[38] Grebeniuk M. A., Ivashchuk V. D., “Sigma-model solutions and intersecting $p$-branes related to Lie algebras”, Phys. Lett. B, 442 (1998), 125–135 ; hep-th/9805113 | DOI | MR | Zbl

[39] Ivashchuk V. D., Kim S.-W., Melnikov V. N., “Hyperbolic Kac–Moody algebra from intersecting $p$-branes”, J. Math. Phys., 40 (1998), 4072–4083 ; Erratum , J. Math. Phys., 42, 2001 hep-th/9803006 | DOI | MR | DOI | MR | Zbl

[40] Ivashchuk V. D., Kim S.-W., “Solutions with intersecting $p$-branes related to Toda chains”, J. Math. Phys., 41 (2000), 444–460 ; hep-th/9907019 | DOI | MR | Zbl

[41] Ivashchuk V. D., Melnikov V. N., “$p$-brane black holes for general intersections”, Gravit. Cosmol., 5 (1999), 313–318 ; gr-qc/0002085 | MR | Zbl

[42] Ivashchuk V. D., Melnikov V. N., “Black hole $p$-brane solutions for general intersection rules”, Gravit. Cosmol., 6 (2000), 27–40 ; hep-th/9910041 | MR | Zbl

[43] Ivashchuk V. D., Melnikov V. N., “Toda $p$-brane black holes and polynomials related to Lie algebras”, Classical Quantum Gravity, 17 (2000), 2073–2092 ; math-ph/0002048 | DOI | MR | Zbl

[44] Ivashchuk V. D., “Composite fluxbranes with general intersections”, Classical Quantum Gravity, 19 (2002), 3033–3047 ; hep-th/0202022 | DOI | MR | Zbl

[45] Ivashchuk V. D., “Composite $S$-brane solutions related to Toda-type systems”, Classical Quantum Gravity, 20 (2003), 261–275 ; hep-th/0208101 | DOI | MR | Zbl

[46] Ivashchuk V. D., Melnikov V. N., “Exact solutions in multidimensional gravity with antisymmetric forms”, Classical Quantum Gravity, 18 (2001), R82–R157 ; hep-th/0110274 | DOI | MR

[47] Ivashchuk V. D., Melnikov V. N., “Multidimensional classical and quantum cosmology with intersecting $p$-branes”, J. Math. Phys., 39 (1998), 2866–2888 ; hep-th/9708157 | DOI | MR | Zbl

[48] Ivashchuk V. D., Melnikov V. N., “Sigma-model for the generalized composite $p$-branes Corrigenda”, Classical Quantum Gravity, 15 (1998), 3941–3942 ; Classical Quantum Gravity, 14 (1997), 3001–3029 ; hep-th/9705036 | DOI | MR | DOI | MR | Zbl

[49] Englert F., Houart L., “$G^{+++}$ invariant formulation of gravity and M-theories: exact intersecting brane solutions”, J. High Energy Phys., 2004:5 (2004), 059, 15 pp., ages ; hep-th/0405082 | DOI | MR

[50] Ivashchuk V. D., Melnikov V. N., “Intersecting $p$-brane solutions in multidimensional gravity and M-theory”, Gravit. Cosmol., 2 (1996), 297–305 ; hep-th/9612089 | Zbl

[51] Ivashchuk V. D., Melnikov V. N., “Generalized intersecting $p$-brane solutions from $\sigma$-model”, Phys. Lett. B, 403 (1997), 23–30 | DOI | MR

[52] Ivashchuk V. D., Melnikov V. N., Rainer M., “Multidimensional sigma-models with composite electric $p$-branes”, Gravit. Cosmol., 4 (1998), 73–82 ; gr-qc/9705005 | MR | Zbl

[53] Aref'eva I. Ya., Rytchkov O. A., “Incidence matrix description of intersecting $p$-brane solutions”, L. D. Faddeev's Seminar on Mathematical Physics, Amer. Math. Soc. Transl. Ser. 2, 201, Providence, RI, 2000, 19–38 ; hep-th/9612236 | MR

[54] Argurio R., Englert F., Hourant L., “Intersection rules for $p$-branes”, Phys. Lett. B, 398 (1997), 61–68 ; hep-th/9701042 | DOI | MR

[55] Aref'eva I. Ya., Ivanov M. G., Rytchkov O. A., “Properties of intersecting $p$-branes in various dimensions”, Supersymmetry and Quantum Field Theory (Kharkov, 1997), Lecture Notes in Phys., 509, Springer, Berlin, 1998, 25–41 ; hep-th/9702077 | MR

[56] Aref'eva I. Ya., Ivanov M. G., Volovich I. V., “Non-extremal intersecting $p$-branes in various dimensions”, Phys. Lett. B, 406 (1997), 44–48 ; hep-th/9702079 | DOI | MR

[57] Ohta N., “Intersection rules for non-extreme $p$-branes”, Phys. Lett. B, 403 (1997), 218–224 ; hep-th/9702164 | DOI | MR

[58] Bronnikov K. A., Ivashchuk V. D., Melnikov V. N., “The Reissner–Nordström problem for intersecting electric and magnetic $p$-branes”, Gravit. Cosmol., 3 (1997), 203–212 ; gr-qc/9710054 | Zbl

[59] Ivashchuk V. D., “On symmetries of target space for $\sigma$-model of $p$-brane origin”, Gravit. Cosmol., 4 (1998), 217–220 ; hep-th/9804102 | MR | Zbl

[60] Gal'tsov D. V., Rytchkov O. A., “Generating branes via sigma models”, Phys. Rev. D, 58 (1998), 122001, 13 pp., ages ; hep-th/9801180 | DOI | MR | Zbl

[61] West P., “The IIA, IIB and eleven dimensional theories and their common $E_{11}$ origin”, Nuclear Phys. B, 693 (2004), 76–102 ; hep-th/0402140 | DOI | MR | Zbl

[62] Tseytlin A. A., “Harmonic superposition of $M$-branes”, Nuclear Phys. B, 475 (1996), 149–163 ; hep-th/9604035 | DOI | MR | Zbl

[63] Bergshoeff E., de Roo M., Eyras E., Janssen B., van der Schaar J. P., “Multiple intersections of $D$-branes and $M$-branes”, Nuclear Phys. B, 494 (1997), 119–143 ; hep-th/9612095 | DOI | MR | Zbl

[64] Gauntlett J. P., “Intersecting branes”, Proceeding of the February 97 APCTP Winter School on Dualities of Gauge and String Theories, World Sci. Publ., River Edge, NJ, 1998, 146–193 ; hep-th/9705011 | MR | Zbl

[65] Tseytlin A. A., “No-force condition and BPS combinations of $p$-branes in 11 and 10 dimensions”, Nuclear Phys. B, 487 (1997), 141–154 ; hep-th/9609212 | DOI | MR

[66] Gibbons G. W., Hawking S. W., “Action integrals and partition functions in quantum gravity”, Phys. Rev. D, 15 (1977), 2752–2751 | DOI | MR

[67] Ivashchuk V. D., Melnikov V. N., Zhuk A. I., “On Wheeler–DeWitt equation in multidimensional cosmology”, Nuovo Cimento B, 104 (1989), 575–582 | DOI | MR

[68] Nicolai H., Olive D. I., “The principal SO(1,2) subalgebra of a hyperbolic Kac–Moody algebra”, Lett. Math. Phys., 58 (2001), 141–152 ; hep-th/0107146 | DOI | MR | Zbl

[69] Khviengia N., Khviengia Z., Lü H., Pope C. N., “Towards a field theory of F-theory”, Classical Quantum Gravity, 15 (1998), 759–773 ; hep-th/9703012 | DOI | MR | Zbl

[70] Vafa C., “Evidence for $F$-theory”, Nuclear Phys. B, 469 (1996), 403–415 ; hep-th/9602022 | DOI | MR | Zbl

[71] Majumdar S. D., “A class of exact solutions of Einstein's field equations”, Phys. Rev., 72 (1947), 390–398 | DOI | MR

[72] Gavrilov V. R., Melnikov V. N., “Toda chains with type $A_m$ Lie algebra for multidimensional classical cosmology with intersecting $p$-branes”, Proceedings of the International seminar “Curent Topics in Mathematical Cosmology” (30 March – 4 April, 1998, Potsdam, Germany), eds. M. Rainer and H.-J. Schmidt, World Scientific, 1998, 310–322 ; hep-th/9807004 | MR

[73] Gavrilov V. R., Melnikov V. N., “$D$-dimensional $p$-brane cosmological models associated with Lie algebras of type $A_m$”, Theoret. and Math. Phys., 123 (2000), 726–743 | DOI | MR | Zbl

[74] Lü H., Mukherji S., Pope C. N., Xu K.-W., “Cosmological solutions in string theories”, Phys. Rev. D, 55 (1997), 7926–7935 ; hep-th/9610107 | DOI | MR

[75] Lü H., Pope C. N., Xu K. W., “Liouville and Toda solitons in $M$-theory”, Modern Phys. Lett. A, 11 (1996), 1785–1796 ; hep-th/9604058 | DOI | MR

[76] Lü H., Maharana H., Mukherji S., Pope C. N., “Cosmological solutions, $p$-branes and the Wheeler–DeWitt equation”, Phys. Rev. D, 57 (1997), 2219–2229 ; hep-th/9707182 | DOI | MR

[77] Gutperle M., Strominger A., “Spacelike branes”, J. High Energy Phys., 2002:4 (2002), 018, 19 pp., ages ; hep-th/0202210 | DOI | MR

[78] Chen C. M., Gal'tsov D. M., Gutperle M., “$S$-brane solutions in supergravity theories”, Phys. Rev. D, 66 (2002), 024043, 6 pp., ages ; hep-th/0204071 | DOI | MR

[79] Kruczenski M., Myers R. C., Peet A. W., “Supergravity S-branes”, J. High Energy Phys., 2002:5 (2002), 039, 23 pp., ages ; hep-th/0204144 | DOI | MR

[80] Roy S., “On supergravity solutions of space-like Dp-branes”, J. High Energy Phys., 2002:8 (2002), 025, 13 pp., ages ; hep-th/0205198 | DOI | MR

[81] Degger N. S., Kaya A., “Intersecting S-brane solutions of $D=11$ supergravity”, J. High Energy Phys., 2002:7 (2002), 038, 14 pp., ages ; hep-th/0206057 | DOI | MR

[82] Ohta N., “Intersection rules for $S$-branes”, Phys. Lett. B, 558 (2003), 213–220 ; hep-th/0301095 | DOI | MR | Zbl

[83] Ivashchuk V. D., On composite S-brane solutions with orthogonal intersection rules, hep-th/0309027 | MR

[84] Bronnikov K. A., “Block-orthogonal brane systems, black holes and wormholes”, Gravit. Cosmol., 4 (1998), 49–56 ; hep-th/9710207 | MR | Zbl

[85] Ivashchuk V. D., Melnikov V. N., “Cosmological and spherically symmetric solutions with intersecting $p$-branes”, J. Math. Phys., 40 (1999), 6558–6576 | DOI | MR | Zbl

[86] Ivashchuk V. D., Melnikov V. N., “Multidimensional cosmological and spherically symmetric solutions with intersecting $p$-branes”, Mathematical and Quantum Aspects of Relativity and Cosmology, Proceedings of the Second Samos Meeting on Cosmology, Geometry and Relativity (1998, Pythagoreon, Samos, Greece), Lecture Notes in Phys., 537, eds. S. Cotsakis and G. W. Gibbons, Springer, Berlin, 2000, 214–247 ; gr-qc/9901001 | MR | Zbl

[87] Toda M., “Waves in nonlinear lattice”, Progr. Theor. Phys. Suppl., 45 (1970), 174–200 | DOI

[88] Bogoyavlensky O. I., “On perturbations of the periodic Toda lattice”, Comm. Math. Phys., 51 (1976), 201–209 | DOI | MR

[89] Kostant B., “The solution to a generalized Toda lattice and representation theory”, Adv. in Math., 34 (1979), 195–338 | DOI | MR | Zbl

[90] Olshanetsky M. A., Perelomov A. M., “Explicit solutions of the periodic Toda lattices”, Invent. Math., 54 (1979), 261–269 | DOI | MR | Zbl

[91] Adler M., van Moerbeke P., “Kowalewski's asymptotic method, Kac–Moody Lie algebras and regularization”, Comm. Math. Phys., 83 (1982), 83–106 | DOI | MR | Zbl

[92] Kozlov V. V., Treshchev D. V., “Polynomial integrals of Hamiltonian systems with exponential interaction”, Math. USSR-Izv., 34 (1990), 555–574 | DOI | MR | Zbl

[93] Emel'yanov K. V., Tsygvintsev A. V., “Kovalevskaya exponents of systems with exponential interaction”, Sb. Math., 191 (2000), 1459–1469 | DOI | MR

[94] Gebert R. W., Inami T., Mizoguchi S., “Toda field theories associated with hyperbolic Kac–Moody algebra – Painlevé properties and $W$ algebras”, Internat. J. Modern Phys. A, 11 (1996), 5479–5493 ; hep-th/9503176 | DOI | MR | Zbl

[95] Fre P., Sorin A. S., The arrow of time and the Weyl group: all supergravity billiards are integrable, arXiv:0710.1059

[96] Henneaux M., Leston M., Persson D., Spindel P., “Geometric configurations, regular subalgebras of $E_{10}$ and $M$-theory cosmology”, J. High Energy Phys., 2006:10 (2006), 021, 49 pp., ages ; hep-th/0606123 | DOI | MR

[97] Ivashchuk V. D., Melnikov V. N., “Multidimensional classical and quantum cosmology with perfect fluid”, Gravit. Cosmol., 1 (1995), 133–148 ; hep-th/9503223 | Zbl

[98] Alimi J.-M., Ivashchuk V. D., Kononogov S. A., Melnikov V. N., “Multidimensional cosmology with anisotropic fluid: acceleration and variation of $G$”, Gravit. Cosmol., 12 (2006), 173–178 ; gr-qc/0611015 | Zbl

[99] Cvetic M., Tseytlin A. A., “Nonextreme black holes from nonextreme intersecting M-branes”, Nuclear Phys. B, 478 (1996), 181–198 ; hep-th/9606033 | DOI | MR | Zbl

[100] Ohta N., Shimizu T., “Non-extreme black holes from intersecting M-branes”, Internat. J. Modern Phys. A, 13 (1998), 1305–1328 ; hep-th/9701095 | DOI | MR | Zbl

[101] Cotsakis S., Ivashchuk V. D., Melnikov V. N., “$p$-brane black holes and post-Newtonian approximation”, Gravit. Cosmol., 5 (1999), 52–57 ; gr-qc/9804080 | MR | Zbl

[102] Grebeniuk M. A., Ivashchuk V. D., Kim S.-W., “Black-brane solutions for $C_2$ algebra”, J. Math. Phys., 43 (2002), 6016–6023 ; hep-th/0111219 | DOI | MR | Zbl

[103] Grebeniuk M. A., Ivashchuk V. D., Melnikov V. N., “Black-brane solution for $A_3$ algebra”, Phys. Lett. B, 543 (2002), 98–106 ; hep-th/0208083 | DOI | MR | Zbl

[104] Golubtsova A. A., Ivashchuk V. D., On calculation of fluxbrane polynomials corresponding to classical series of Lie algebras, arXiv:0804.0757

[105] Goncharenko I. S., Ivashchuk V. D., Melnikov V. N., “Fluxbrane and $S$-brane solutions with polynomials related to rank-2 Lie algebras”, Gravit. Cosmol., 13 (2007), 262–266 ; math-ph/0612079 | MR | Zbl

[106] Alimi J.-M., Ivashchuk V. D., Melnikov V. N., “An $S$-brane solution with acceleration and small enough variation of $G$”, Gravit. Cosmol., 13 (2007), 137–141 ; arXiv:0711.3770 | MR | Zbl

[107] Ivashchuk V. D., Kononogov S. A., Melnikov V. N., “Electric S-brane solutions corresponding to rank-2 Lie algebras: acceleration and small variation of $G$”, Grav. Cosmol., 14:3 (2008), 235–240 ; arXiv:0901.0025 | DOI | MR | Zbl

[108] Ivashchuk V. D., Singleton D., “Composite electric $S$-brane solutions with maximal number of branes”, J. High Energy Phys., 2004:10 (2004), 061, 18 pp., ages ; hep-th/0407224 | DOI | MR

[109] Ivashchuk V. D., Melnikov V. N., Singleton D., “On avoiding cosmological oscillating behavior for S-brane solutions with diagonal metrics”, Phys. Rev. D, 72 (2005), 103511, 8 pp., ages ; gr-qc/0509065 | DOI

[110] Ivashchuk V. D., Melnikov V. N., Singleton D., “Electric S-brane solutions with parallel forms on Ricci-flat factor space”, Gravit. Cosmol., 12 (2006), 315–320 ; hep-th/0610167 | MR

[111] Dehnen H., Ivashchuk V. D., Melnikov V. N., “S-brane solutions with (anti-)self-dual parallel charge density form on a Ricci-flat submanifold”, Gravit. Cosmol., 13 (2007), 23–30 ; hep-th/0612260 | MR | Zbl