@article{SIGMA_2009_5_a68,
author = {Alexander I. Nesterov},
title = {Non-Hermitian {Quantum} {Systems} and {Time-Optimal} {Quantum} {Evolution}},
journal = {Symmetry, integrability and geometry: methods and applications},
year = {2009},
volume = {5},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SIGMA_2009_5_a68/}
}
Alexander I. Nesterov. Non-Hermitian Quantum Systems and Time-Optimal Quantum Evolution. Symmetry, integrability and geometry: methods and applications, Tome 5 (2009). http://geodesic.mathdoc.fr/item/SIGMA_2009_5_a68/
[1] Carlini A., Hosoya A., Koike T., Okudaira Y., “Time-optimal quantum evolution”, Phys. Rev. Lett., 96 (2006), 060503, 4 pp., ages | DOI
[2] Bender C. M., Brody D. C., Jones H. F., Meister B. K., “Faster than Hermitian quantum mechanics”, Phys. Rev. Lett., 98 (2007), 040403, 4 pp., ages ; quant-ph/0609032 | DOI | MR
[3] Brody D. C., “Elementary derivation for passage times”, J. Phys. A: Math. Gen., 36 (2003), 5587–5593 ; quant-ph/0302067 | DOI | MR | Zbl
[4] Brody D. C., Hook D. W., “On optimum Hamiltonians for state transformations”, J. Phys. A: Math. Gen., 39 (2006), L167–L170 ; quant-ph/0601109 | DOI | MR | Zbl
[5] Bender C. M., Brody D. C., “Optimal time evolution for Hermitian and non-Hermitian Hamiltonians”, Time in Quantum Mechanics, 2nd revised ed., Lecture Notes in Phys., 734, ed. J. G. Muga, Springer, Berlin, 2008; arXiv:0808.1823
[6] Assis P. E. G., Fring A., “The quantum brachistochrone problem for non-Hermitian Hamiltonians”, J. Phys. A: Math. Theor., 41 (2008), 244002, 12 pp., ages ; quant-ph/0703254 | DOI | MR | Zbl
[7] Mostafazadeh A., “Quantum brachistochrone problem and the geometry of the state space in pseudo-Hermitian quantum mechanics”, Phys. Rev. Lett., 99 (2007), 130502, 4 pp., ages ; arXiv:0706.3844 | DOI
[8] Mostafazadeh A., “Hamiltonians generating optimal-speed evolutions”, Phys. Rev. A, 79 (2009), 014101, 4 pp., ages ; arXiv:0804.4755 | DOI
[9] Bender C. M., Brody D. C., Jones H. F., Meister B. K., Comment on the quantum brachistochrone problem, arXiv:0804.3487
[10] Günther U., Samsonov B. F., “The $\mathcal{PT}$-symmetric brachistochrone problem, Lorentz boosts and non-unitary operator equivalence classes”, Phys. Rev. A, 78 (2008), 042115, 9 pp., ages ; arXiv:0709.0483 | DOI | MR
[11] Günther U., Samsonov B. F., “Naimark-dilated $\mathcal{PT}$-symmetric brachistochrone”, Phys. Rev. Lett., 101 (2008), 230404, 4 pp., ages ; arXiv:0807.3643 | DOI | MR
[12] Günther U., Rotter I., Samsonov B. F., “Projective Hilbert space structures at exceptional points”, J. Phys. A: Math. Theor., 40 (2007), 8815–8833 ; arXiv:0704.1291 | DOI | MR | Zbl
[13] Martin D., Is $\cal PT$-symmetric quantum mechanics just quantum mechanics in a non-orthogonal basis?, quant-ph/0701223
[14] Rotter I., “The brachistochrone problem in open quantum systems”, J. Phys. A: Math. Theor., 40 (2007), 14515–14526 ; arXiv:0708.3891 | DOI | MR | Zbl
[15] Weisskopf V. F., Wigner E. P., “Berechnung der natürlichen Linienbreite auf Grund der Diracschen Lichttheorie”, Z. f. Physik, 63 (1930), 54–73 | DOI | Zbl
[16] Weisskopf V. F., Wigner E. P., “Über die natürliche Linienbreite in der Strahlung des harmonischen Oszillators”, Z. f. Physics, 65 (1930), 18–29 | DOI | Zbl
[17] Aharonov Y., Massar S., Popescu S., Tollaksen J., Vaidman L., “Adiabatic measurements on metastable systems”, Phys. Rev. Lett., 77 (1996), 983–987 ; quant-ph/9602011 | DOI
[18] Plenio M. B., Knight P. L., “The quantum-jump approach to dissipative dynamics in quantum optics”, Rev. Modern Phys., 70 (1998), 101–144 ; quant-ph/9702007 | DOI
[19] Carollo A., Fuentes-Guridi I., França Santos M., Vedral V., “Geometric phase in open system”, Phys. Rev. Lett., 90 (2003), 160402, 4 pp., ages ; quant-ph/0301037 | DOI | MR
[20] Berry M. V., “Physics of nonhermitian degeneracies”, Czechoslovak J. Phys., 54 (2004), 1039–1047 | DOI | MR
[21] Morse P. M., Feshbach H., Methods of theoretical physics, McGraw-Hill, New York, 1953 | MR | Zbl
[22] Chu S.-I., Wu Z.-C., Layton E., “Density matrix formulation of complex geometric quantum phases in dissipative systems”, Chem. Phys. Lett., 157 (1989), 151–158 | DOI | MR
[23] Chu S.-I., Telnov D. A., “Beyond the Floquet theorem: generalized Floquet formalisms and quasienergy methods for atomic and molecular multiphoton processes in intense laser fields”, Phys. Rep., 390 (2004), 1–131 | DOI | MR
[24] Nesterov A. I., An optimum Hamiltonian for non-Hermitian quantum evolution and the complex Bloch sphere, arXiv:0806.4646 | MR
[25] Heiss W. D., “Exceptional points of non-Hermitian operators”, J. Phys. A: Math. Gen., 37 (2004), 2455–2464 ; quant-ph/0304152 | DOI | MR | Zbl
[26] Heiss W. D., “Exceptional points – their universal occurrence and their physical significance”, Czechoslovak J. Phys., 54 (2004), 1091–1099 | DOI
[27] Berry M. V., “Quantal phase factor accompanying adiabatic changes”, Proc. Roy. Soc. London Ser. A, 392 (1984), 45–57 | DOI | MR | Zbl
[28] Berry M. V., Dennis M. R., “The optical singularities of birefringent dichroic chiral crystals”, Proc. Roy. Soc. London Ser. A, 459 (2003), 1261–1292 | DOI | MR | Zbl
[29] Nesterov A. I., Aceves de la Cruz F., “Complex magnetic monopoles, geometric phases and quantum evolution in vicinity of diabolic and exceptional points”, J. Phys. A: Math. Theor., 41 (2008), 485304, 25 pp., ages ; arXiv:0806.3720 | DOI | MR | Zbl
[30] Kirillov O. N., Mailybaev A. A., Seyranian A. P., “Unfolding of eigenvalue surfaces near a diabolic point due to a complex perturbation”, J. Phys. A: Math. Gen., 38 (2005), 5531–5546 ; math-ph/0411006 | DOI | MR | Zbl
[31] Mailybaev A. A., Kirillov O. N., Seyranian A. P., “Geometric phase around exceptional points”, Phys. Rev. A, 72 (2005), 014104, 4 pp., ages ; quant-ph/0501040 | DOI
[32] Seyranian A. P., Kirillov O. N., Mailybaev A. A., “Coupling of eigenvalues of complex matrices at diabolic and exceptional points”, J. Phys. A: Math. Gen., 38 (2005), 1723–1740 ; math-ph/0411024 | DOI | MR | Zbl
[33] Mailybaev A. A., Kirillov O. N., Seyranian A. P., “The Berry phase in a neighborhood of degenerate states”, Dokl. Akad. Nauk, 406 (2006), 464–468 | MR | Zbl
[34] Giri P. R., “Lower bound of minimal time evolution in quantum mechanics”, Internat. J. Theoret. Phys., 47 (2008), 2095–2100 ; arXiv:0706.3653 | DOI | MR
[35] Geyer H. B., Heiss W. D., Scholtz F. G., Non-Hermitian Hamiltonians, metric, other observables and physical implications,, arXiv:0710.5593
[36] Garrison J. C., Wright E. M., “Complex geometrical phases for dissipative systems”, Phys. Lett. A, 128 (1988), 177–181 | DOI | MR
[37] Lamb W. E., Schlicher R. R., Scully M. O., “Matter-field interaction in atomic physics and quantum optics”, Phys. Rev. A, 36 (1987), 2763–2772 | DOI
[38] Baker H. C., “Non-Hermitian quantum theory of multiphoton ionization”, Phys. Rev. A, 30 (1984), 773–793 | DOI | MR
[39] Stafford C. A., Barrett B. R., “Simple model for decay of superdeformed nuclei”, Phys. Rev. C, 60 (1999), 051305, 4 pp., ages ; nucl-th/9906052 | DOI
[40] Dietz B., Friedrich T., Metz J., Miski-Oglu M., Richter A., Schäfer F., Stafford C. A., “Rabi oscillations at exceptional points in microwave billiards”, Phys. Rev. E, 75 (2007), 027201, 4 pp., ages ; cond-mat/0612547 | DOI | MR
[41] Anandan J., Aharonov Y., “Geometry of quantum evolution”, Phys. Rev. Lett., 65 (1990), 1697–1700 | DOI | MR | Zbl
[42] Aharonov Y., Anandan J., “Phase change during a cyclic quantum evolution”, Phys. Rev. Lett., 58 (1987), 1593–1596 | DOI | MR