Boundaries of Graphs of Harmonic Functions
Symmetry, integrability and geometry: methods and applications, Tome 5 (2009) Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Harmonic functions $u\colon\mathbb R^n\to\mathbb R^m$ are equivalent to integral manifolds of an exterior differential system with independence condition $(M,\mathcal T,\omega)$. To this system one associates the space of conservation laws $\mathcal C$. They provide necessary conditions for $g\colon\mathbb S^{n-1}\to M$ to be the boundary of an integral submanifold. We show that in a local sense these conditions are also sufficient to guarantee the existence of an integral manifold with boundary $g(\mathbb S^{n-1})$. The proof uses standard linear elliptic theory to produce an integral manifold $G\colon D^n\to M$ and the completeness of the space of conservation laws to show that this candidate has $g(\mathbb S^{n-1})$ as its boundary. As a corollary we obtain a new elementary proof of the characterization of boundaries of holomorphic disks in $\mathbb C^m$ in the local case.
Keywords: exterior differential systems; integrable systems; conservation laws; moment conditions.
@article{SIGMA_2009_5_a67,
     author = {D. Fox},
     title = {Boundaries of {Graphs} of {Harmonic} {Functions}},
     journal = {Symmetry, integrability and geometry: methods and applications},
     year = {2009},
     volume = {5},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SIGMA_2009_5_a67/}
}
TY  - JOUR
AU  - D. Fox
TI  - Boundaries of Graphs of Harmonic Functions
JO  - Symmetry, integrability and geometry: methods and applications
PY  - 2009
VL  - 5
UR  - http://geodesic.mathdoc.fr/item/SIGMA_2009_5_a67/
LA  - en
ID  - SIGMA_2009_5_a67
ER  - 
%0 Journal Article
%A D. Fox
%T Boundaries of Graphs of Harmonic Functions
%J Symmetry, integrability and geometry: methods and applications
%D 2009
%V 5
%U http://geodesic.mathdoc.fr/item/SIGMA_2009_5_a67/
%G en
%F SIGMA_2009_5_a67
D. Fox. Boundaries of Graphs of Harmonic Functions. Symmetry, integrability and geometry: methods and applications, Tome 5 (2009). http://geodesic.mathdoc.fr/item/SIGMA_2009_5_a67/

[1] Bochner S., “Analytic and meromorphic continuation by means of Green's formula”, Ann. of Math. (2), 44 (1943), 652–673 | DOI | MR | Zbl

[2] Bryant R. L., Chern S. S., Gardner R. B., Goldschmidt H. L., Griffiths P. A., Exterior differential systems, Springer-Verlag, New York, 1991 | MR

[3] Bryant R. L., Griffiths P. A., “Characteristic cohomology of differential systems. I. General theory”, J. Amer. Math. Soc., 8 (1995), 507–596 | DOI | MR | Zbl

[4] Gilbarg D., Trudinger N. S., Elliptic partial differential equations of second order, Springer-Verlag, Berlin, 2001 | MR | Zbl

[5] Harvey F. R., Lawson H. B. Jr., “On boundaries of complex analytic varieties. I”, Ann. of Math. (2), 102 (1975), 223–290 | DOI | MR | Zbl

[6] Harvey F. R., Lawson H. B. Jr., “On boundaries of complex analytic varieties. II”, Ann. Math. (2), 106 (1977), 213–238 | DOI | MR | Zbl

[7] Ivey T. A., Landsberg J. M., Cartan for beginners: differential geometry via moving frames and exterior differential systems, Graduate Studies in Mathematics, 61, American Mathematical Society, Providence, RI, 2003 | MR | Zbl

[8] Wermer J., “The hull of a curve in $C^n$”, Ann. of Math. (2), 68 (1958), 550–561 | DOI | MR | Zbl