Symplectic Applicability of Lagrangian Surfaces
Symmetry, integrability and geometry: methods and applications, Tome 5 (2009) Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We develop an approach to affine symplectic invariant geometry of Lagrangian surfaces by the method of moving frames. The fundamental invariants of elliptic Lagrangian immersions in affine symplectic four-space are derived together with their integrability equations. The invariant setup is applied to discuss the question of symplectic applicability for elliptic Lagrangian immersions. Explicit examples are considered.
Keywords: Lagrangian surfaces; affine symplectic geometry; moving frames; differential invariants; applicability.
@article{SIGMA_2009_5_a66,
     author = {Emilio Musso and Lorenzo Nicolodi},
     title = {Symplectic {Applicability} of {Lagrangian} {Surfaces}},
     journal = {Symmetry, integrability and geometry: methods and applications},
     year = {2009},
     volume = {5},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SIGMA_2009_5_a66/}
}
TY  - JOUR
AU  - Emilio Musso
AU  - Lorenzo Nicolodi
TI  - Symplectic Applicability of Lagrangian Surfaces
JO  - Symmetry, integrability and geometry: methods and applications
PY  - 2009
VL  - 5
UR  - http://geodesic.mathdoc.fr/item/SIGMA_2009_5_a66/
LA  - en
ID  - SIGMA_2009_5_a66
ER  - 
%0 Journal Article
%A Emilio Musso
%A Lorenzo Nicolodi
%T Symplectic Applicability of Lagrangian Surfaces
%J Symmetry, integrability and geometry: methods and applications
%D 2009
%V 5
%U http://geodesic.mathdoc.fr/item/SIGMA_2009_5_a66/
%G en
%F SIGMA_2009_5_a66
Emilio Musso; Lorenzo Nicolodi. Symplectic Applicability of Lagrangian Surfaces. Symmetry, integrability and geometry: methods and applications, Tome 5 (2009). http://geodesic.mathdoc.fr/item/SIGMA_2009_5_a66/

[1] Álvarez Paiva J. C., Durán C. E., Geometric invariants of fanning curves, math.SG/0502481

[2] Barbot T., Charette V., Drumm T., Goldman W. M., Melnik K., A primer on the (2+1) Einstein universe, arXiv:0706.3055

[3] Bianchi L., “Complementi alle ricerche sulle superficie isoterme”, Ann. Mat. Pura Appl., 12 (1905), 20–54

[4] Blaschke W., Vorlesungen über Differentialgeometrie und geometrische Grundlagen von Einsteins Relativitätstheorie. III. Differentialgeometrie der Kreise und Kugeln, bearbeitet von G. Thomsen, J. Springer, Berlin, 1929 | Zbl

[5] Bryant R. L., “A duality theorem for Willmore surfaces”, J. Differential Geom., 20 (1984), 23–53 | MR | Zbl

[6] Burstall F., Hertrich-Jeromin U., Pedit F., Pinkall U., “Curved flats and isothermic surfaces”, Math. Z., 225 (1997), 199–209 ; dg-ga/9411010 | DOI | MR | Zbl

[7] Calapso P., “Sulle superficie a linee di curvatura isoterme”, Rend. Circ. Mat. Palermo, 17 (1903), 273–286 | DOI

[8] Cartan É., “Sur le problème général de la déformation”, C. R. Congrés Strasbourg, 1920, 397–406 ; Oeuvres Complètes, III 1, 539–548 | Zbl

[9] Cartan É., “Sur la déformation projective des surfaces”, Ann. Scient. Éc. Norm. Sup. (3), 37 (1920), 259–356 ; Oeuvres Complètes, III 1, 441–538 | MR | Zbl

[10] Chern S.-S., Wang H.-C., “Differential geometry in symplectic space. I”, Sci. Rep. Nat. Tsing Hua Univ., 4 (1947), 453–477 | MR

[11] Deconchy V., “Hypersurfaces in symplectic affine geometry”, Differential Geom. Appl., 17 (2002), 1–13 | DOI | MR | Zbl

[12] Fubini G., “Applicabilità proiettiva di due superficie”, Rend. Circ. Mat. Palermo, 41 (1916), 135–162 | DOI | Zbl

[13] Gálvez J. A., Martínez A., Milán F., “Flat surfaces in the hyperbolic 3-space”, Math. Ann., 316 (2000), 419–435 | DOI | MR | Zbl

[14] Griffiths P. A., “On Cartan's method of Lie groups and moving frames as applied to uniqueness and existence questions in differential geometry”, Duke Math. J., 41 (1974), 775–814 | DOI | MR | Zbl

[15] Guillemin V., Sternberg S., Variations on a theme by Kepler, American Mathematical Society Colloquium Publications, 42, American Mathematical Society, Providence, RI, 1990 | MR | Zbl

[16] Hertrich-Jeromin U., Musso E., Nicolodi L., “Möbius geometry of surfaces of constant mean curvature 1 in hyperbolic space”, Ann. Global Anal. Geom., 19 (2001), 185–205 ; math.DG/9810157 | DOI | MR | Zbl

[17] Jensen G. R., “Deformation of submanifolds of homogeneous spaces”, J. Differential Geom., 16 (1981), 213–246 | MR

[18] Jensen G. R., Musso E., “Rigidity of hypersurfaces in complex projective space”, Ann. Sci. École Norm. Sup. (4), 27 (1994), 227–248 | MR | Zbl

[19] Kamran N., Olver P., Tenenblat K., “Local symplectic invariants for curves”, Commun. Contemp. Math., 11:2 (2009), 165–183 | DOI | MR | Zbl

[20] Kokubu M., Umehara M., Yamada K., “Flat fronts in hyperbolic 3-space”, Pacific J. Math., 216 (2004), 149–175 ; math.DG/0301224 | DOI | MR | Zbl

[21] McKay B., “Lagrangian submanifolds in affine symplectic geometry”, Differential Geom. Appl., 24 (2006), 670–689 ; math.DG/0508118 | DOI | MR | Zbl

[22] Musso E., “Deformazione di superfici nello spazio di Möbius”, Rend. Istit. Mat. Univ. Trieste, 27 (1995), 25–45 | MR | Zbl

[23] Musso E., Nicolodi L., “Deformation and applicability of surfaces in Lie sphere geometry”, Tohoku Math. J., 58 (2006), 161–187 ; math.DG/0408009 | DOI | MR | Zbl

[24] Musso E., Nicolodi L., Conformal deformation of spacelike surfaces in Minkowski space, Houston J. Math., to appear | MR