Monopoles and Modifications of Bundles over Elliptic Curves
Symmetry, integrability and geometry: methods and applications, Tome 5 (2009) Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Modifications of bundles over complex curves is an operation that allows one to construct a new bundle from a given one. Modifications can change a topological type of bundle. We describe the topological type in terms of the characteristic classes of the bundle. Being applied to the Higgs bundles modifications establish an equivalence between different classical integrable systems. Following Kapustin and Witten we define the modifications in terms of monopole solutions of the Bogomolny equation. We find the Dirac monopole solution in the case $R\times$ (elliptic curve). This solution is a three-dimensional generalization of the Kronecker series. We give two representations for this solution and derive a functional equation for it generalizing the Kronecker results. We use it to define Abelian modifications for bundles of arbitrary rank. We also describe non-Abelian modifications in terms of theta-functions with characteristic.
Keywords: integrable systems; field theory; characteristic classes.
@article{SIGMA_2009_5_a64,
     author = {Andrey M. Levin and Mikhail A. Olshanetsky and Andrei V. Zotov},
     title = {Monopoles and {Modifications} of {Bundles} over {Elliptic} {Curves}},
     journal = {Symmetry, integrability and geometry: methods and applications},
     year = {2009},
     volume = {5},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SIGMA_2009_5_a64/}
}
TY  - JOUR
AU  - Andrey M. Levin
AU  - Mikhail A. Olshanetsky
AU  - Andrei V. Zotov
TI  - Monopoles and Modifications of Bundles over Elliptic Curves
JO  - Symmetry, integrability and geometry: methods and applications
PY  - 2009
VL  - 5
UR  - http://geodesic.mathdoc.fr/item/SIGMA_2009_5_a64/
LA  - en
ID  - SIGMA_2009_5_a64
ER  - 
%0 Journal Article
%A Andrey M. Levin
%A Mikhail A. Olshanetsky
%A Andrei V. Zotov
%T Monopoles and Modifications of Bundles over Elliptic Curves
%J Symmetry, integrability and geometry: methods and applications
%D 2009
%V 5
%U http://geodesic.mathdoc.fr/item/SIGMA_2009_5_a64/
%G en
%F SIGMA_2009_5_a64
Andrey M. Levin; Mikhail A. Olshanetsky; Andrei V. Zotov. Monopoles and Modifications of Bundles over Elliptic Curves. Symmetry, integrability and geometry: methods and applications, Tome 5 (2009). http://geodesic.mathdoc.fr/item/SIGMA_2009_5_a64/

[1] Levin A., Olshanetsky M., Zotov A., “Hitchin systems – symplectic hecke correspondence and two-dimensional version”, Comm. Math. Phys., 236 (2003), 93–133 ; nlin.SI/0110045 | DOI | MR | Zbl

[2] Hitchin N., “Stable bundles and integrable systems”, Duke Math. J., 54 (1987), 91–114 | DOI | MR | Zbl

[3] Levin A., Olshanetsky M., Zotov A., “Painlevé VI, rigid tops and reflection equation”, Comm. Math. Phys., 268 (2006), 67–103 ; math.QA/0508058 | DOI | MR | Zbl

[4] Krichever I., “Vector bundles and Lax equations on algebraic curves”, Comm. Math. Phys., 229 (2002), 229–269 ; hep-th/0108110 | DOI | MR | Zbl

[5] Baxter R., “Eight-vertex model in lattice statistics and one-dimensional anisotropic Heisenberg chain. I”, Ann. Physics, 76 (1973), 48–71 | DOI | Zbl

[6] Date E., Jimbo M., Miwa T., Okado M., “Fusion of the eight vertex SOS model”, Lett. Math. Phys., 12 (1986), 209–215 | DOI | MR

[7] Felder G., “Conformal field theory and integrable systems associated to elliptic curves”, Proceedings of the International Congress of Mathematicians, Vols. 1, 2 (Zurich, 1994), Birkhäuser, Basel, 1995, 1247–1255 ; hep-th/9609153 | DOI | MR | Zbl

[8] Belavin A., “Dynamical symmetry of integrable system”, Nuclear Phys. B, 180 (1981), 189–200 | DOI | MR | Zbl

[9] Kapustin A., Witten E., “Electric-magnetic duality and the geometric Langlands program”, Commun. Number Theory Phys., 1 (2007), 1–236 ; hep-th/0604151 | MR | Zbl

[10] Theoret. and Math. Phys., 146 (2006), 45–52 | DOI | MR | Zbl

[11] Flaschka H., Newell A. C., “Monodromy- and spectrum-preserving deformations. I”, Comm. Math. Phys., 76 (1980), 65–116 | DOI | MR | Zbl

[12] Krichever I., “The $\tau$-function of the universal Whitham hierarchy, matrix models and topological field theories”, Comm. Pure Appl. Math., 47 (1994), 437–475 ; hep-th/9205110 | DOI | MR | Zbl

[13] Levin A., Olshanetsky M., “Hierarchies of isomonodromic deformations and Hitchin systems”, Moscow Seminar in Mathematical Physics, Amer. Math. Soc. Transl. Ser. 2, 191, Amer. Math. Soc., Providence, RI, 1999, 223–262 | MR | Zbl

[14] Arinkin D., “On $\lambda$-connections on a curve where $\lambda$ is a formal parameter”, Math. Res. Lett., 12 (2005), 551–565 | MR | Zbl

[15] Tong D., Quantum vortex strings: a review, ; Shifman M., Yung A., Supersymmetric solitons and how they help us understand non-Abelian gauge theories, ; Gorsky A., Shifman M., Yung A., “$\mathcal N=1$ supersymmetric quantum chromodynamics: how confined non-Abelian monopoles emerge from quark condensation”, Phys. Rev. D, 75 (2007), 065032, 16 pp., ages ; arXiv:0809.5060hep-th/0703267hep-th/0701040 | MR | MR | DOI | MR

[16] Popov A., Bounces/dyons in the plane wave matrix model and $\mathrm{SU}(N)$ Yang–Mills theory, arXiv:0804.3845 | MR

[17] Weyl A., Elliptic functions according to Eisenstein and Kronecker, Ergebnisse der Mathematik und ihrer Grenzgebiete, 88, Springer-Verlag, Berlin – New York, 1976 | MR

[18] Zakharov V. E., Manakov S. V., Novikov S. P., Pitaevsky L. P., Theory of solitons. The method of the inverse scattering problem, Nauka, Moscow, 1980 (in Russian) | MR

[19] Ward R., “Integrable systems and twistors”, Integrable Systems (Oxford, 1997), Oxf. Grad. Texts Math., 4, Oxford Univ. Press, New York, 1999, 121–134 | MR

[20] Springer Series in Soviet Mathematics, Springer-Verlag, Berlin, 1990 | Zbl

[21] Bourbaki N., Lie groups and Lie algebras, Chapters 4–6, Elements of Mathematics (Berlin), Springer-Verlag, Berlin, 2002 | MR | Zbl