@article{SIGMA_2009_5_a64,
author = {Andrey M. Levin and Mikhail A. Olshanetsky and Andrei V. Zotov},
title = {Monopoles and {Modifications} of {Bundles} over {Elliptic} {Curves}},
journal = {Symmetry, integrability and geometry: methods and applications},
year = {2009},
volume = {5},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SIGMA_2009_5_a64/}
}
TY - JOUR AU - Andrey M. Levin AU - Mikhail A. Olshanetsky AU - Andrei V. Zotov TI - Monopoles and Modifications of Bundles over Elliptic Curves JO - Symmetry, integrability and geometry: methods and applications PY - 2009 VL - 5 UR - http://geodesic.mathdoc.fr/item/SIGMA_2009_5_a64/ LA - en ID - SIGMA_2009_5_a64 ER -
%0 Journal Article %A Andrey M. Levin %A Mikhail A. Olshanetsky %A Andrei V. Zotov %T Monopoles and Modifications of Bundles over Elliptic Curves %J Symmetry, integrability and geometry: methods and applications %D 2009 %V 5 %U http://geodesic.mathdoc.fr/item/SIGMA_2009_5_a64/ %G en %F SIGMA_2009_5_a64
Andrey M. Levin; Mikhail A. Olshanetsky; Andrei V. Zotov. Monopoles and Modifications of Bundles over Elliptic Curves. Symmetry, integrability and geometry: methods and applications, Tome 5 (2009). http://geodesic.mathdoc.fr/item/SIGMA_2009_5_a64/
[1] Levin A., Olshanetsky M., Zotov A., “Hitchin systems – symplectic hecke correspondence and two-dimensional version”, Comm. Math. Phys., 236 (2003), 93–133 ; nlin.SI/0110045 | DOI | MR | Zbl
[2] Hitchin N., “Stable bundles and integrable systems”, Duke Math. J., 54 (1987), 91–114 | DOI | MR | Zbl
[3] Levin A., Olshanetsky M., Zotov A., “Painlevé VI, rigid tops and reflection equation”, Comm. Math. Phys., 268 (2006), 67–103 ; math.QA/0508058 | DOI | MR | Zbl
[4] Krichever I., “Vector bundles and Lax equations on algebraic curves”, Comm. Math. Phys., 229 (2002), 229–269 ; hep-th/0108110 | DOI | MR | Zbl
[5] Baxter R., “Eight-vertex model in lattice statistics and one-dimensional anisotropic Heisenberg chain. I”, Ann. Physics, 76 (1973), 48–71 | DOI | Zbl
[6] Date E., Jimbo M., Miwa T., Okado M., “Fusion of the eight vertex SOS model”, Lett. Math. Phys., 12 (1986), 209–215 | DOI | MR
[7] Felder G., “Conformal field theory and integrable systems associated to elliptic curves”, Proceedings of the International Congress of Mathematicians, Vols. 1, 2 (Zurich, 1994), Birkhäuser, Basel, 1995, 1247–1255 ; hep-th/9609153 | DOI | MR | Zbl
[8] Belavin A., “Dynamical symmetry of integrable system”, Nuclear Phys. B, 180 (1981), 189–200 | DOI | MR | Zbl
[9] Kapustin A., Witten E., “Electric-magnetic duality and the geometric Langlands program”, Commun. Number Theory Phys., 1 (2007), 1–236 ; hep-th/0604151 | MR | Zbl
[10] Theoret. and Math. Phys., 146 (2006), 45–52 | DOI | MR | Zbl
[11] Flaschka H., Newell A. C., “Monodromy- and spectrum-preserving deformations. I”, Comm. Math. Phys., 76 (1980), 65–116 | DOI | MR | Zbl
[12] Krichever I., “The $\tau$-function of the universal Whitham hierarchy, matrix models and topological field theories”, Comm. Pure Appl. Math., 47 (1994), 437–475 ; hep-th/9205110 | DOI | MR | Zbl
[13] Levin A., Olshanetsky M., “Hierarchies of isomonodromic deformations and Hitchin systems”, Moscow Seminar in Mathematical Physics, Amer. Math. Soc. Transl. Ser. 2, 191, Amer. Math. Soc., Providence, RI, 1999, 223–262 | MR | Zbl
[14] Arinkin D., “On $\lambda$-connections on a curve where $\lambda$ is a formal parameter”, Math. Res. Lett., 12 (2005), 551–565 | MR | Zbl
[15] Tong D., Quantum vortex strings: a review, ; Shifman M., Yung A., Supersymmetric solitons and how they help us understand non-Abelian gauge theories, ; Gorsky A., Shifman M., Yung A., “$\mathcal N=1$ supersymmetric quantum chromodynamics: how confined non-Abelian monopoles emerge from quark condensation”, Phys. Rev. D, 75 (2007), 065032, 16 pp., ages ; arXiv:0809.5060hep-th/0703267hep-th/0701040 | MR | MR | DOI | MR
[16] Popov A., Bounces/dyons in the plane wave matrix model and $\mathrm{SU}(N)$ Yang–Mills theory, arXiv:0804.3845 | MR
[17] Weyl A., Elliptic functions according to Eisenstein and Kronecker, Ergebnisse der Mathematik und ihrer Grenzgebiete, 88, Springer-Verlag, Berlin – New York, 1976 | MR
[18] Zakharov V. E., Manakov S. V., Novikov S. P., Pitaevsky L. P., Theory of solitons. The method of the inverse scattering problem, Nauka, Moscow, 1980 (in Russian) | MR
[19] Ward R., “Integrable systems and twistors”, Integrable Systems (Oxford, 1997), Oxf. Grad. Texts Math., 4, Oxford Univ. Press, New York, 1999, 121–134 | MR
[20] Springer Series in Soviet Mathematics, Springer-Verlag, Berlin, 1990 | Zbl
[21] Bourbaki N., Lie groups and Lie algebras, Chapters 4–6, Elements of Mathematics (Berlin), Springer-Verlag, Berlin, 2002 | MR | Zbl