@article{SIGMA_2009_5_a62,
author = {Roberto Ferreiro P\'erez and Jaime Mu\~noz Masqu\'e},
title = {Non-Hamiltonian {Actions} and {Lie-Algebra} {Cohomology} of {Vector} {Fields}},
journal = {Symmetry, integrability and geometry: methods and applications},
year = {2009},
volume = {5},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SIGMA_2009_5_a62/}
}
TY - JOUR AU - Roberto Ferreiro Pérez AU - Jaime Muñoz Masqué TI - Non-Hamiltonian Actions and Lie-Algebra Cohomology of Vector Fields JO - Symmetry, integrability and geometry: methods and applications PY - 2009 VL - 5 UR - http://geodesic.mathdoc.fr/item/SIGMA_2009_5_a62/ LA - en ID - SIGMA_2009_5_a62 ER -
Roberto Ferreiro Pérez; Jaime Muñoz Masqué. Non-Hamiltonian Actions and Lie-Algebra Cohomology of Vector Fields. Symmetry, integrability and geometry: methods and applications, Tome 5 (2009). http://geodesic.mathdoc.fr/item/SIGMA_2009_5_a62/
[1] Ferreiro Pérez R., “Equivariant characteristic forms in the bundle of connections”, J. Geom. Phys., 54 (2005), 197–212 ; math-ph/0307022 | DOI | MR | Zbl
[2] Ferreiro Pérez R., “Local cohomology and the variational bicomplex”, Int. J. Geom. Methods Mod. Phys., 5 (2008), 587–604 | DOI | MR | Zbl
[3] Ferreiro Pérez R., Muñoz Masqué J., Pontryagin forms on $(4k-2)$-manifolds and symplectic structures on the spaces of Riemannian metrics, math.DG/0507076
[4] Fuks D. B., Cohomology of infinite-dimensional Lie algebras, Contemporary Soviet Mathematics, Consultants Bureau, New York, 1986 | MR
[5] Gel'fand I. M., Fuks D. B., “Cohomologies of the Lie algebra of vector fields on the circle”, Funkcional. Anal. i Prilozen., 2:4 (1968), 92–93 | MR
[6] Hamilton R., “The inverse function theorem of Nash and Moser”, Bull. Amer. Math. Soc. (N.S.), 7 (1982), 65–222 | DOI | MR | Zbl
[7] McDuff D., Salamon D., Introduction to symplectic topology, Oxford Mathematical Monographs, Oxford Science Publications, The Clarendon Press, Oxford University Press, New York, 1995 | MR | Zbl
[8] Pohjanpelto J., Anderson I. M., “Infinite-dimensional Lie algebra cohomology and the cohomology of invariant Euler–Lagrange complexes: a preliminary report”, Differential Geometry and Applications (Brno, 1995), Masaryk Univ., Brno, 1996, 427–448 | MR | Zbl