On the Moore Formula of Compact Nilmanifolds
Symmetry, integrability and geometry: methods and applications, Tome 5 (2009) Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Let $G$ be a connected and simply connected two-step nilpotent Lie group and $\Gamma$ a lattice subgroup of $G$. In this note, we give a new multiplicity formula, according to the sense of Moore, of irreducible unitary representations involved in the decomposition of the quasi-regular representation $\operatorname{Ind}_\Gamma^G(1)$. Extending then the Abelian case.
Keywords: nilpotent Lie group; lattice subgroup; rational structure; unitary representation; Kirillov theory.
@article{SIGMA_2009_5_a61,
     author = {H. Hamrouni},
     title = {On the {Moore} {Formula} of {Compact} {Nilmanifolds}},
     journal = {Symmetry, integrability and geometry: methods and applications},
     year = {2009},
     volume = {5},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SIGMA_2009_5_a61/}
}
TY  - JOUR
AU  - H. Hamrouni
TI  - On the Moore Formula of Compact Nilmanifolds
JO  - Symmetry, integrability and geometry: methods and applications
PY  - 2009
VL  - 5
UR  - http://geodesic.mathdoc.fr/item/SIGMA_2009_5_a61/
LA  - en
ID  - SIGMA_2009_5_a61
ER  - 
%0 Journal Article
%A H. Hamrouni
%T On the Moore Formula of Compact Nilmanifolds
%J Symmetry, integrability and geometry: methods and applications
%D 2009
%V 5
%U http://geodesic.mathdoc.fr/item/SIGMA_2009_5_a61/
%G en
%F SIGMA_2009_5_a61
H. Hamrouni. On the Moore Formula of Compact Nilmanifolds. Symmetry, integrability and geometry: methods and applications, Tome 5 (2009). http://geodesic.mathdoc.fr/item/SIGMA_2009_5_a61/

[1] Corwin L., Greenleaf F. P., “Character formulas and spectra of compact nilmanifolds”, J. Funct. Anal., 21 (1976), 123–154 | DOI | MR | Zbl

[2] Corwin L. J., Greenleaf F. P., Representations of nilpotent Lie groups and their applications. Part I. Basic theory and examples, Cambridge Studies in Advanced Mathematics, 18, Cambridge University Press, Cambridge, 1990 | MR | Zbl

[3] Gelfand I. M., Graev M. I., Piatetski-Shapiro I. I., Representation theory and automorphic functions, W. B. Saunders Co., Philadelphia, Pa.-London – Toronto, Ont., 1969 | MR

[4] Howe R., “On Frobenius reciprocity for unipotent algebraic group over $Q$”, Amer. J. Math., 93 (1971), 163–172 | DOI | MR | Zbl

[5] Malcev A. I., On a class of homogeneous spaces, Amer. Math. Soc. Transl., 1951, no. 39, 1951, 33 pp., ages | MR

[6] Matsushima Y., “On the discrete subgroups and homogeneous spaces of nilpotent Lie groups”, Nagoya Math. J., 2 (1951), 95–110 | MR | Zbl

[7] Moore C. C., “Decomposition of unitary representations defined by discrete subgroups of nilpotent Lie groups”, Ann. of Math. (2), 82 (1965), 146–182 | DOI | MR | Zbl

[8] Nielsen O. A., Unitary representations and coadjoint orbits of low dimensional nilpotent Lie groups, Queen's Papers in Pure and Applied Mathematics, 63, Queen's University, Kingston, ON, 1983 | MR | Zbl

[9] Onishchik A. L., Vinberg E. B., Lie groups and Lie algebras. II. Discrete subgroups of Lie groups and cohomologies of Lie groups and Lie algebras, Encyclopaedia of Mathematical Sciences, 21, Springer-Verlag, Berlin, 2000 | MR | Zbl

[10] Pesce H., “Calcul du spectre d'une nilvariété de rang deux et applications”, Trans. Amer. Math. Soc., 339 (1993), 433–461 | DOI | MR | Zbl

[11] Raghunathan M. S., Discrete subgroups of Lie groups, Ergebnisse der Mathematik und ihrer Grenzgebiete, 68, Springer-Verlag, New York – Heidelberg, 1972 | MR | Zbl

[12] Richardson L. F., “Decomposition of the $L^2$ space of a general compact nilmanifolds”, Amer. J. Math., 93 (1971), 173–190 | DOI | MR