On the Spectrum of a Discrete Non-Hermitian Quantum System
Symmetry, integrability and geometry: methods and applications, Tome 5 (2009) Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

In this paper, we develop spectral analysis of a discrete non-Hermitian quantum system that is a discrete counterpart of some continuous quantum systems on a complex contour. In particular, simple conditions for discreteness of the spectrum are established.
Keywords: difference operator; non-Hermiticity; spectrum; eigenvalue; eigenvector; completely continuous operator.
@article{SIGMA_2009_5_a6,
     author = {Ebru Ergun},
     title = {On the {Spectrum} of {a~Discrete} {Non-Hermitian} {Quantum} {System}},
     journal = {Symmetry, integrability and geometry: methods and applications},
     year = {2009},
     volume = {5},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SIGMA_2009_5_a6/}
}
TY  - JOUR
AU  - Ebru Ergun
TI  - On the Spectrum of a Discrete Non-Hermitian Quantum System
JO  - Symmetry, integrability and geometry: methods and applications
PY  - 2009
VL  - 5
UR  - http://geodesic.mathdoc.fr/item/SIGMA_2009_5_a6/
LA  - en
ID  - SIGMA_2009_5_a6
ER  - 
%0 Journal Article
%A Ebru Ergun
%T On the Spectrum of a Discrete Non-Hermitian Quantum System
%J Symmetry, integrability and geometry: methods and applications
%D 2009
%V 5
%U http://geodesic.mathdoc.fr/item/SIGMA_2009_5_a6/
%G en
%F SIGMA_2009_5_a6
Ebru Ergun. On the Spectrum of a Discrete Non-Hermitian Quantum System. Symmetry, integrability and geometry: methods and applications, Tome 5 (2009). http://geodesic.mathdoc.fr/item/SIGMA_2009_5_a6/

[1] Bender C. M., “Making sense of non-Hermitian Hamiltonians”, Rep. Progr. Phys., 70 (2007), 947–1018 ; hep-th/0703096 | DOI | MR

[2] Bender C. M., Boettcher S., “Real spectra in non-Hermitian Hamiltonians having $PT$-symmetry”, Phys. Rev. Lett., 80 (1998), 5243–5246 ; physics/9712001 | DOI | MR | Zbl

[3] Dorey P., Dunning C., Tateo T., “Spectral equivalences, Bethe ansatz equations, and reality properties in $PT$-symmetric quantum mechanics”, J. Phys. A: Math. Gen., 34 (2001), 5679–5704 ; hep-th/0103051 | DOI | MR | Zbl

[4] Shin K. C., “On the reality of the eigenvalues for a class of $PT$-symmetric oscillators”, Comm. Math. Phys., 229 (2002), 543–564 ; math-ph/0201013 | DOI | MR | Zbl

[5] Mostafazadeh A., “Pseudo-Hermitian description of $PT$-symmetric systems defined on a complex contour”, J. Phys. A: Math. Gen., 38 (2005), 3213–3234 ; quant-ph/0410012 | DOI | MR | Zbl

[6] Kelley W. G., Peterson A. C., Difference equations. An introduction with applications, Academic Press, Inc., Boston, MA, 1991 | MR | Zbl

[7] Teschl G., Jacobi operators and completely integrable nonlinear lattices, Mathematical Surveys and Monographs, 72, American Mathematical Society, Providence, RI, 2000 | MR | Zbl

[8] Bender C. M., Meisinger P. N., Wang Q., “Finite dimensional $PT$-symmetric Hamiltonians”, J. Phys. A: Math. Gen., 36 (2003), 6791–6797 ; quant-ph/0303174 | DOI | MR | Zbl

[9] Weigret S., “How to test for digonalizability: the discretized $PT$-invariant square-well potential”, Czechoslovak J. Phys., 55 (2005), 1183–1186 | DOI | MR

[10] Znojil M., “Matching method and exact solvability of discrete $PT$-symmetric square wells”, J. Phys. A: Math. Gen., 39 (2006), 10247–10261 ; quant-ph/0605209 | DOI | MR | Zbl

[11] Znojil M., “Maximal couplings in $PT$-symmetric chain models with the real spectrum of energies”, J. Phys. A: Math. Theor., 40 (2007), 4863–4875 ; math-ph/0703070 | DOI | MR | Zbl

[12] Znojil M., “Tridiagonal $PT$-symmetric $N$ by $N$ Hamiltonians and fine-tuning of their obsevability domains in the strongly non-Hermitian regime”, J. Phys. A: Math. Theor., 40 (2007), 13131–13148 ; arXiv:0709.1569 | DOI | MR | Zbl

[13] Jones H. F., “Scattering from localized non-Hermitian potentials”, Phys. Rev. D, 76 (2007), 125003, 5 pp., ages ; arXiv:0707.3031 | DOI

[14] Znojil M., “Scattering theory with localized non-Hermiticities”, Phys. Rev. D, 78 (2008), 025026, 10 pp., ages ; arXiv:0805.2800 | DOI | MR

[15] Ergun E., “On the reality of the spectrum of a non-Hermitian discrete Hamiltonian”, Rep. Math. Phys., 63 (2009), 75–93 | DOI | MR | Zbl

[16] Akhiezer N. I., Glazman I. M., Theory of linear operators in Hilbert space, Vol. 1, Ungar, New York, 1961 | Zbl

[17] Lusternik L. A., Sobolev V. J., Elements of functional analysis, H. Ward Crowley Frederick Ungar Publishing Co., New York, 1961 | MR