@article{SIGMA_2009_5_a59,
author = {Sofiane Bouarroudj and Pavel Grozman and Dimitry Leites},
title = {Classification of {Finite} {Dimensional} {Modular} {Lie} {Superalgebras} with {Indecomposable} {Cartan} {Matrix}},
journal = {Symmetry, integrability and geometry: methods and applications},
year = {2009},
volume = {5},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SIGMA_2009_5_a59/}
}
TY - JOUR AU - Sofiane Bouarroudj AU - Pavel Grozman AU - Dimitry Leites TI - Classification of Finite Dimensional Modular Lie Superalgebras with Indecomposable Cartan Matrix JO - Symmetry, integrability and geometry: methods and applications PY - 2009 VL - 5 UR - http://geodesic.mathdoc.fr/item/SIGMA_2009_5_a59/ LA - en ID - SIGMA_2009_5_a59 ER -
%0 Journal Article %A Sofiane Bouarroudj %A Pavel Grozman %A Dimitry Leites %T Classification of Finite Dimensional Modular Lie Superalgebras with Indecomposable Cartan Matrix %J Symmetry, integrability and geometry: methods and applications %D 2009 %V 5 %U http://geodesic.mathdoc.fr/item/SIGMA_2009_5_a59/ %G en %F SIGMA_2009_5_a59
Sofiane Bouarroudj; Pavel Grozman; Dimitry Leites. Classification of Finite Dimensional Modular Lie Superalgebras with Indecomposable Cartan Matrix. Symmetry, integrability and geometry: methods and applications, Tome 5 (2009). http://geodesic.mathdoc.fr/item/SIGMA_2009_5_a59/
[1] Benkart G., Gregory Th., Premet A., The recognition theorem for graded Lie algebras in prime characteristic, Mem. Amer. Math. Soc., 197, no. 920, 2009 ; math.RA/0508373 | MR
[2] Bouarroudj S., Grozman P., Lebedev A., Leites D., Divided power (co)homology. Presentations of simple finite dimensional modular Lie superalgebras with Cartan matrix, in preparation
[3] Bouarroudj S., Grozman P., Leites D., Cartan matrices and presentations of Elduque and Cunha simple Lie superalgebras, see [LCh], math.RT/0611391
[4] Bouarroudj S., Grozman P., Leites D., Cartan matrices and presentations of the exceptional simple Elduque Lie superalgebra, see [LCh], math.RT/0611392
[5] Funct. Anal. Appl., 42:3 (2008), 161–168 ; math.RT/0704.0130 | DOI | MR | Zbl
[6] Bouarroudj S., Grozman P., Leites D.,, Deformations of the simple symmetric modular Lie superalgebras, see [LCh], in preparation
[7] Bouarroudj S., Grozman P., Leites D., New simple modular Lie algebras in characteristic 2 as generalized prolongs, in preparation
[8] Bourbaki N., Lie groups and Lie algebras, Chapters 4–6, Translated from the 1968 French original by Andrew Pressley, Elements of Mathematics (Berlin), Springer-Verlag, Berlin, 2002 | MR | Zbl
[9] Brown G., “Properties of a 29-dimensional simple Lie algebra of characteristic three”, Math. Ann., 261 (1982), 487–492 | DOI | MR | Zbl
[10] Cartan É., “Üeber die einfachen Transformationsgruppen”, Leipz. Ber., XLV (1893), 395–420 ; Reprinted in ØE uvres complètes, Partie II (French) [Complete works. Part II], Algèbre, systèmes différentiels et problèmes d'équivalence, Éditions du Centre National de la Recherche Scientifique (CNRS), Paris, 1984 | Zbl | MR
[11] Chapovalov D., Chapovalov M., Lebedev A., Leites D., The classification of almost affine (hyperbolic) Lie superalgebras, J. Nonlinear Math. Phys., to appear
[12] Cohen A. M., Roozemond D. A., Computing Chevalley bases in small characteristics, arXiv:0901.1717 | MR
[13] Cunha I., Elduque A., “An extended Freudenthal magic square in characteristic 3”, J. Algebra, 317 (2007), 471–509 ; math.RA/0605379 | DOI | MR | Zbl
[14] Cunha I., Elduque A., “The extended Freudenthal magic square and Jordan algebras”, Manuscripta Math., 123 (2007), 325–351 ; math.RA/0608191 | DOI | MR | Zbl
[15] Djoković D.\v Z., Hochschild G., “Semisimplicity of $2$-graded Lie algebras. II”, Illinois J. Math., 20 (1976), 134–143 ; Djoković D.\v Z., “Classification of some $2$-graded Lie algebras”, J. Pure Appl. Algebra, 7 (1976), 217–230 ; Djoković D.\v Z., “Isomorphism of some simple $2$-graded Lie algebras”, Canad. J. Math., 29 (1977), 289–294 | MR | Zbl | DOI | MR | Zbl | MR | Zbl
[16] Dzhumadildaev A., “10-commutators, 13-commutators, and odd derivations”, J. Nonlinear Math. Phys., 15 (2008), 87–103 ; math-ph/0603054 | DOI | MR
[17] Elduque A., “New simple Lie superalgebras in characteristic 3”, J. Algebra, 296 (2006), 196–233 ; math.RA/0412395 | DOI | MR | Zbl
[18] Elduque A., “Some new simple modular Lie superalgebras”, Pacific J. Math., 231 (2007), 337–359 ; math.RA/0512654 | DOI | MR | Zbl
[19] Elduque A., “Models of some simple modular Lie superalgebras”, Pacific J. Math., 240 (2009), 49–83 ; arXiv:0805.1304 | DOI | MR | Zbl
[20] Vols. 1–3, Harwood Academic Publ., Chur, 1985 | MR
[21] Frappat L., Sciarrino A., Sorba P., Dictionary on Lie Superalgebras, with 1 CD-ROM (Windows, Macintosh and UNIX), Academic Press, Inc., San Diego, CA, 2000 ; hep-th/9607161 | MR
[22] Freund P., Kaplansky I., “Simple supersymmetries”, J. Math. Phys., 17 (1976), 228–231 | DOI | MR | Zbl
[23] Frohardt D., Griess R. L. Jr., “Automorphisms of modular Lie algebras”, Nova J. Algebra Geom., 1 (1992), 339–345 | MR | Zbl
[24] Fulton W., Harris J., Representation theory. A first course, Graduate Texts in Mathematics, 129, Readings in Mathematics, Springer-Verlag, New York, 1991 | MR
[25] Grozman P., SuperLie, http://www.equaonline.com/math/SuperLie
[26] Hoyt C., Serganova V., “Classification of finite-growth general Kac–Moody superalgebras”, Comm. Algebra, 35 (2007), 851–874 ; arXiv:0810.2637 | DOI | MR | Zbl
[27] Jacobson N., Lie algebras, Dover Publications, Inc., New York, 1979 | MR
[28] Kac V. G., Infinite-dimensional Lie algebras, 3rd ed., Cambridge University Press, Cambridge, 1990 | MR
[29] Kac V. G., “Lie superalgebras”, Adv. Math., 26 (1977), 8–96 | DOI | MR | Zbl
[30] Russian Acad. Sci. Izv. Math., 45:1 (1995), 229 | DOI | MR | MR | Zbl
[31] Kaplansky I., Graded Lie algebras, Preprints, University of Chicago, Chicago, 1975; available at http://justpasha.org/math/links/subj/lie/kaplansky
[32] Kaplansky I., “Superalgebras”, Pacific J. Math., 86 (1980), 93–98 | MR | Zbl
[33] Kochetkov Yu., Leites D., “Simple finite dimensional Lie algebras in characteristic 2 related to superalgebras and on a notion of finite simple group”, Proceedings of the International Conference on Algebra, Part 2 (Novosibirsk, August 1989), Contemp. Math., 131, eds. L. A. Bokut, Yu. L. Ershov and A. I. Kostrikin, Amer. Math. Soc., Providence, RI, 1992, 59–67 | MR
[34] Lebedev A., Non-degenerate bilinear forms in characteristic 2, related contact forms, simple Lie algebras and superalgebras, math.AC/0601536
[35] Leites D., “Towards classification of simple finite dimensional modular Lie superalgebras in characteristic $p$”, J. Prime Res. Math., 3 (2007), 101–110 ; arXiv:0710.5638 | MR | Zbl
[36] Leites D. (ed.), Seminar on Supermanifolds, Reports of the Department of Mathematics of Stockholm University, nn. 1–34, 1986–1990, 2100 pp., ages (a version in Russian is to appear in MCCME, 2009; a version in English in preparation).
[37] Leites D. (ed.), Representation theory. Vol. 2: Nonholonomic distributions in representation theory. Quest for simple modular Lie algebras, (S. Bouarroudj, B. Clarke, P. Grozman, A. Lebedev, D. Leites, I. Shchepochkina), A. Salam School of Mathematical Sciences, Lahore, 2009
[38] Leites D., Saveliev M. V., Serganova V. V., “Embeddings of $\mathrm{osp}(N|2)$ and completely integrable systems”, Proceedings of International Seminar Group-Theoretical Methods in Physics (Yurmala, May 1985), eds. V. Dodonov and V. Man'ko, Nauka, Moscow, 1986, 377–394 | MR
[39] Leites D., Shchepochkina I., Classification of simple Lie superalgebras of vector fields, preprint MPIM-2003-28
[40] Theoret. and Math. Phys., 126 (2001), 281–306 ; math-ph/0510048 | DOI | MR | Zbl
[41] Onishchik A. L., Vinberg È. B., Lie groups and algebraic groups, Translated from the Russian and with a preface by D. A. Leites, Springer Series in Soviet Mathematics, Springer-Verlag, Berlin, 1990 | MR | Zbl
[42] Premet A., Strade H., Simple Lie algebras of small characteristic. VI. Completion of the classification, arXiv:0711.2899 | MR
[43] ftp.mccme.ru/users/protopopov/dyno
[44] Ray U., Automorphic forms and Lie superalgebras, Algebras and Applications, 5, Springer, Dordrecht, 2006 | MR
[45] Nahm W., Rittenberg V., Scheunert M., “The classification of graded Lie algebras”, Phys. Lett. B, 61 (1976), 383–384 | DOI | MR
[46] Sergeev A., Orthogonal polynomials and Lie superalgebras, math.RT/9810110
[47] Math. USSR-Izv., 24 (1985), 539–551 | DOI | MR | Zbl
[48] Serganova V., “On generalizations of root systems”, Comm. Algebra, 24 (1996), 4281–4299 | DOI | MR | Zbl
[49] Theoret. and Math. Phys., 147 (2006), 821–838 ; math.RT/0509472 | DOI | MR | Zbl
[50] Siberian Math. J., 34:3 (1993), 548–554 | DOI | MR | Zbl
[51] Steinberg R., Lectures on Chevalley groups, Notes prepared by John Faulkner and Robert Wilson, Yale University, New Haven, Conn., 1968 | MR
[52] Strade H., Simple Lie algebras over fields of positive characteristic. I. Structure theory, de Gruyter Expositions in Mathematics, 38, Walter de Gruyter Co., Berlin, 2004 | MR
[53] van de Leur J., “A classification of contragredient Lie superalgebras of finite growth”, Comm. Algebra, 17 (1989), 1815–1841 | DOI | MR | Zbl
[54] Weisfeiler B. Ju., Kac V. G., “Exponentials in Lie algebras of characteristic $p$”, Izv. Akad. Nauk SSSR Ser. Mat., 35 (1971), 762–788 (in Russian) | MR | Zbl