Mots-clés : transformation formulas.
@article{SIGMA_2009_5_a58,
author = {Fokko J. van de Bult and Eric M. Rains},
title = {Basic {Hypergeometric} {Functions} as {Limits} of {Elliptic} {Hypergeometric} {Functions}},
journal = {Symmetry, integrability and geometry: methods and applications},
year = {2009},
volume = {5},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SIGMA_2009_5_a58/}
}
TY - JOUR AU - Fokko J. van de Bult AU - Eric M. Rains TI - Basic Hypergeometric Functions as Limits of Elliptic Hypergeometric Functions JO - Symmetry, integrability and geometry: methods and applications PY - 2009 VL - 5 UR - http://geodesic.mathdoc.fr/item/SIGMA_2009_5_a58/ LA - en ID - SIGMA_2009_5_a58 ER -
Fokko J. van de Bult; Eric M. Rains. Basic Hypergeometric Functions as Limits of Elliptic Hypergeometric Functions. Symmetry, integrability and geometry: methods and applications, Tome 5 (2009). http://geodesic.mathdoc.fr/item/SIGMA_2009_5_a58/
[1] van de Bult F. J., Rains E. M., Stokman J. V., “Properties of generalized univariate hypergeometric functions”, Comm. Math. Phys., 275 (2007), 37–95 ; math.CA/0607250 | DOI | MR | Zbl
[2] Chen W. Y. C., Fu A. M., “Semi-finite forms of bilateral basic hypergeometric series”, Proc. Amer. Math. Soc., 134 (2006), 1719–1725 ; math.CA/0501242 | DOI | MR | Zbl
[3] Conway J. H., Sloane N. J. A., “The cell structures of certain lattices”, Miscellanea Mathematica, Springer, Berlin, 1991, 71–107 | MR
[4] van Diejen J. F., Spiridonov V. P., “An elliptic Macdonald–Morris conjecture and multiple modular hypergeometric sums”, Math. Res. Lett., 7 (2000), 729–746 | MR | Zbl
[5] van Diejen J. F., Spiridonov V. P., “Elliptic Selberg integrals”, Internat. Math. Res. Notices, 2001:20 (2001), 1083–1110 | DOI | MR | Zbl
[6] Gasper G., Rahman M., Basic hypergeometric series, 2nd ed., Encyclopedia of Mathematics and Its Applications, 96, Cambridge University Press, Cambridge, 2004 | MR | Zbl
[7] Gupta D. P., Masson D. R., “Contiguous relations, continued fractions and orthogonality”, Trans. Amer. Math. Soc., 350 (1998), 769–808 ; math.CA/9511218 | DOI | MR | Zbl
[8] Lievens S., Van der Jeugd J., “Invariance groups of three term transformations for basic hypergeometric series”, J. Comput. Appl. Math., 197 (2006), 1–14 | DOI | MR | Zbl
[9] Lievens S., Van der Jeugd J., “Symmetry groups of Bailey's transformations for ${}_{10}\phi_9$-series”, J. Comput. Appl. Math., 206 (2007), 498–519 | DOI | MR | Zbl
[10] Rains E. M., Transformations of elliptic hypergeometric integrals, Ann. Math., to appear
[11] Rains E. M., “Limits of elliptic hypergeometric integrals”, Ramanujan J., 18:3 (2009), 257–306 ; math.CA/0607093 | DOI | MR | Zbl
[12] Rains E. M., Elliptic Littlewood identities, arXiv:0806.0871
[13] Ruijsenaars S. N. M., “First order analytic difference equations and integrable quantum systems”, J. Math. Phys., 38 (1997), 1069–1146 | DOI | MR | Zbl
[14] Russian Math. Surveys, 56:1 (2001), 85–186 | DOI | MR | Zbl
[15] Spiridonov V. P., “Theta hypergeometric integrals”, Algebra i Analiz, 15 (2003), 161–215 ; English transl.: St. Petersburg Math. J., 15 (2004), 929–967 ; math.CA/0303205 | MR | Zbl | DOI
[16] Spiridonov V. P., “Classical elliptic hypergeometric functions and their applications”, Rokko Lect. in Math. Kobe University, 18 (2005), 253–287; math.CA/0511579
[17] Spiridonov V. P., “Short proofs of the elliptic beta integrals”, Ramanujan J., 13 (2007), 265–283 ; math.CA/0408369 | DOI | MR | Zbl
[18] Russian Math. Surveys, 63:3 (2008), 405–472 ; arXiv:0805.3135 | DOI | MR | Zbl