@article{SIGMA_2009_5_a56,
author = {Arkady Berenstein and Yurii Burman},
title = {Dunkl {Operators} and {Canonical} {Invariants} of {Reflection} {Groups}},
journal = {Symmetry, integrability and geometry: methods and applications},
year = {2009},
volume = {5},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SIGMA_2009_5_a56/}
}
Arkady Berenstein; Yurii Burman. Dunkl Operators and Canonical Invariants of Reflection Groups. Symmetry, integrability and geometry: methods and applications, Tome 5 (2009). http://geodesic.mathdoc.fr/item/SIGMA_2009_5_a56/
[1] Andrews G. E., Askey R., Roy R., Special functions, Encyclopedia of Mathematics and Its Applications, 71, Cambridge University Press, Cambridge, 1999 | MR | Zbl
[2] Berenstein A., Burman Yu., “Quasiharmonic polynomials for Coxeter groups and representations of Cherednik algebras”, Trans. Amer. Math. Soc., 362:2010 (2009), 229–260 ; math.RT/0505173 | DOI | MR
[3] Berest Yu., “The problem of lacunas and analysis on root systems”, Trans. Amer. Math. Soc., 352 (2000), 3743–3776 | DOI | MR | Zbl
[4] Berest Y., Etingof P., Ginzburg V., “Finite-dimensional representations of rational Cherednik algebras”, Int. Math. Res. Not., 2003:19 (2003), 1053–1088 ; math.RT/0208138 | DOI | MR | Zbl
[5] Broue M., Malle G., Rouquier R., “Complex reflection groups, braid groups, Hecke algebras”, J. Reine Angew. Math., 500 (1998), 127–190 | MR | Zbl
[6] Chevalley C., “Invariants of finite groups generated by reflections”, Amer. J. Math., 77 (1955), 778–782 | DOI | MR | Zbl
[7] Cohen A., “Finite complex reflection groups”, Ann. Sci. École Norm. Sup. (4), 9 (1976), 379–436 | MR | Zbl
[8] Dunkl C. F., “Differential-difference operators associated to reflection groups”, Trans. Amer. Math. Soc., 311 (1989), 167–183 | DOI | MR | Zbl
[9] Dunkl C. F., “Intertwining operators and polynomials associated with symmetric group”, Monatsh. Math., 126 (1998), 181–209 | DOI | MR | Zbl
[10] Dunkl C. F., “Polynomials associated with dihedral groups”, SIGMA, 3 (2007), 052, 19 pp., ages ; math.CA/0702107 | MR | Zbl
[11] Dunkl C. F., de Jeu M. F. E., Opdam E. M., “Singular polynomials for finite reflection groups”, Trans. Amer. Math. Soc., 346 (1994), 237–256 | DOI | MR | Zbl
[12] Dunkl C. F., Xu Yu., Orthogonal polynomials of several variables, Cambridge University Press, Cambridge, 2001 | MR | Zbl
[13] Etingof P., Stoica E., Griffeth S., Unitary representations of rational Cherednik algebras, arXiv:0901.4595 | MR
[14] Heckman G. J., “A remark on the Dunkl differential-difference operators”, Harmonic analysis on reductive groups (Brunswick, ME, 1989), Progr. Math., 101, Birkhäuser Boston, Boston, MA, 1991, 181–191 | MR
[15] Iwasaki K., “Basic invariants of finite reflection groups”, J. Algebra, 195 (1997), 538–547 | DOI | MR | Zbl
[16] Kostant B., “Clifford algebra analogue of the Hopf–Koszul–Samelson theorem, the $\rho$-decomposition $\mathcal C(\mathfrak g)=\mathrm{End} V_\rho\otimes\mathcal C(P)$, and the $\mathfrak g$-module structure of $\bigwedge\mathfrak g$”, Adv. Math., 125 (1997), 275–350 | DOI | MR | Zbl
[17] Lapointe L., Lascoux A., Morse J., “Determinantal expression and recursion for Jack polynomials”, Electron. J. Combin., 7 (2000), Note 1, 7 pp., ages | MR
[18] Macdonald I., Affine Hecke algebras and orthogonal polynomials, Cambridge Tracts in Mathematics, 157, Cambridge University Press, Cambridge, 2003 | MR | Zbl
[19] Opdam E., “Harmonic analysis for certain representations of graded Hecke algebras”, Acta Math., 175 (1995), 75–121 | DOI | MR | Zbl
[20] Steinberg R., “Differential equations invariant under finite reflection groups”, Trans. Amer. Math. Soc., 112 (1964), 392–400 | DOI | MR | Zbl