Dunkl Operators and Canonical Invariants of Reflection Groups
Symmetry, integrability and geometry: methods and applications, Tome 5 (2009) Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Using Dunkl operators, we introduce a continuous family of canonical invariants of finite reflection groups. We verify that the elementary canonical invariants of the symmetric group are deformations of the elementary symmetric polynomials. We also compute the canonical invariants for all dihedral groups as certain hypergeometric functions.
Keywords: Dunkl operators; reflection group.
@article{SIGMA_2009_5_a56,
     author = {Arkady Berenstein and Yurii Burman},
     title = {Dunkl {Operators} and {Canonical} {Invariants} of {Reflection} {Groups}},
     journal = {Symmetry, integrability and geometry: methods and applications},
     year = {2009},
     volume = {5},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SIGMA_2009_5_a56/}
}
TY  - JOUR
AU  - Arkady Berenstein
AU  - Yurii Burman
TI  - Dunkl Operators and Canonical Invariants of Reflection Groups
JO  - Symmetry, integrability and geometry: methods and applications
PY  - 2009
VL  - 5
UR  - http://geodesic.mathdoc.fr/item/SIGMA_2009_5_a56/
LA  - en
ID  - SIGMA_2009_5_a56
ER  - 
%0 Journal Article
%A Arkady Berenstein
%A Yurii Burman
%T Dunkl Operators and Canonical Invariants of Reflection Groups
%J Symmetry, integrability and geometry: methods and applications
%D 2009
%V 5
%U http://geodesic.mathdoc.fr/item/SIGMA_2009_5_a56/
%G en
%F SIGMA_2009_5_a56
Arkady Berenstein; Yurii Burman. Dunkl Operators and Canonical Invariants of Reflection Groups. Symmetry, integrability and geometry: methods and applications, Tome 5 (2009). http://geodesic.mathdoc.fr/item/SIGMA_2009_5_a56/

[1] Andrews G. E., Askey R., Roy R., Special functions, Encyclopedia of Mathematics and Its Applications, 71, Cambridge University Press, Cambridge, 1999 | MR | Zbl

[2] Berenstein A., Burman Yu., “Quasiharmonic polynomials for Coxeter groups and representations of Cherednik algebras”, Trans. Amer. Math. Soc., 362:2010 (2009), 229–260 ; math.RT/0505173 | DOI | MR

[3] Berest Yu., “The problem of lacunas and analysis on root systems”, Trans. Amer. Math. Soc., 352 (2000), 3743–3776 | DOI | MR | Zbl

[4] Berest Y., Etingof P., Ginzburg V., “Finite-dimensional representations of rational Cherednik algebras”, Int. Math. Res. Not., 2003:19 (2003), 1053–1088 ; math.RT/0208138 | DOI | MR | Zbl

[5] Broue M., Malle G., Rouquier R., “Complex reflection groups, braid groups, Hecke algebras”, J. Reine Angew. Math., 500 (1998), 127–190 | MR | Zbl

[6] Chevalley C., “Invariants of finite groups generated by reflections”, Amer. J. Math., 77 (1955), 778–782 | DOI | MR | Zbl

[7] Cohen A., “Finite complex reflection groups”, Ann. Sci. École Norm. Sup. (4), 9 (1976), 379–436 | MR | Zbl

[8] Dunkl C. F., “Differential-difference operators associated to reflection groups”, Trans. Amer. Math. Soc., 311 (1989), 167–183 | DOI | MR | Zbl

[9] Dunkl C. F., “Intertwining operators and polynomials associated with symmetric group”, Monatsh. Math., 126 (1998), 181–209 | DOI | MR | Zbl

[10] Dunkl C. F., “Polynomials associated with dihedral groups”, SIGMA, 3 (2007), 052, 19 pp., ages ; math.CA/0702107 | MR | Zbl

[11] Dunkl C. F., de Jeu M. F. E., Opdam E. M., “Singular polynomials for finite reflection groups”, Trans. Amer. Math. Soc., 346 (1994), 237–256 | DOI | MR | Zbl

[12] Dunkl C. F., Xu Yu., Orthogonal polynomials of several variables, Cambridge University Press, Cambridge, 2001 | MR | Zbl

[13] Etingof P., Stoica E., Griffeth S., Unitary representations of rational Cherednik algebras, arXiv:0901.4595 | MR

[14] Heckman G. J., “A remark on the Dunkl differential-difference operators”, Harmonic analysis on reductive groups (Brunswick, ME, 1989), Progr. Math., 101, Birkhäuser Boston, Boston, MA, 1991, 181–191 | MR

[15] Iwasaki K., “Basic invariants of finite reflection groups”, J. Algebra, 195 (1997), 538–547 | DOI | MR | Zbl

[16] Kostant B., “Clifford algebra analogue of the Hopf–Koszul–Samelson theorem, the $\rho$-decomposition $\mathcal C(\mathfrak g)=\mathrm{End} V_\rho\otimes\mathcal C(P)$, and the $\mathfrak g$-module structure of $\bigwedge\mathfrak g$”, Adv. Math., 125 (1997), 275–350 | DOI | MR | Zbl

[17] Lapointe L., Lascoux A., Morse J., “Determinantal expression and recursion for Jack polynomials”, Electron. J. Combin., 7 (2000), Note 1, 7 pp., ages | MR

[18] Macdonald I., Affine Hecke algebras and orthogonal polynomials, Cambridge Tracts in Mathematics, 157, Cambridge University Press, Cambridge, 2003 | MR | Zbl

[19] Opdam E., “Harmonic analysis for certain representations of graded Hecke algebras”, Acta Math., 175 (1995), 75–121 | DOI | MR | Zbl

[20] Steinberg R., “Differential equations invariant under finite reflection groups”, Trans. Amer. Math. Soc., 112 (1964), 392–400 | DOI | MR | Zbl