Theta Functions, Elliptic Hypergeometric Series, and Kawanaka's Macdonald Polynomial Conjecture
Symmetry, integrability and geometry: methods and applications, Tome 5 (2009) Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We give a new theta-function identity, a special case of which is utilised to prove Kawanaka's Macdonald polynomial conjecture. The theta-function identity further yields a transformation formula for multivariable elliptic hypergeometric series which appears to be new even in the one-variable, basic case.
Keywords: theta functions; Macdonald polynomials; elliptic hypergeometric series.
@article{SIGMA_2009_5_a54,
     author = {Robin Langer and Michael J. Schlosser and S. Ole Warnaar},
     title = {Theta {Functions,} {Elliptic} {Hypergeometric} {Series,} and {Kawanaka's} {Macdonald} {Polynomial} {Conjecture}},
     journal = {Symmetry, integrability and geometry: methods and applications},
     year = {2009},
     volume = {5},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SIGMA_2009_5_a54/}
}
TY  - JOUR
AU  - Robin Langer
AU  - Michael J. Schlosser
AU  - S. Ole Warnaar
TI  - Theta Functions, Elliptic Hypergeometric Series, and Kawanaka's Macdonald Polynomial Conjecture
JO  - Symmetry, integrability and geometry: methods and applications
PY  - 2009
VL  - 5
UR  - http://geodesic.mathdoc.fr/item/SIGMA_2009_5_a54/
LA  - en
ID  - SIGMA_2009_5_a54
ER  - 
%0 Journal Article
%A Robin Langer
%A Michael J. Schlosser
%A S. Ole Warnaar
%T Theta Functions, Elliptic Hypergeometric Series, and Kawanaka's Macdonald Polynomial Conjecture
%J Symmetry, integrability and geometry: methods and applications
%D 2009
%V 5
%U http://geodesic.mathdoc.fr/item/SIGMA_2009_5_a54/
%G en
%F SIGMA_2009_5_a54
Robin Langer; Michael J. Schlosser; S. Ole Warnaar. Theta Functions, Elliptic Hypergeometric Series, and Kawanaka's Macdonald Polynomial Conjecture. Symmetry, integrability and geometry: methods and applications, Tome 5 (2009). http://geodesic.mathdoc.fr/item/SIGMA_2009_5_a54/

[1] Bhatnagar G., Schlosser M. J., “$C_n$ and $D_n$ very-well-poised $_{10}\phi_9$ transformations”, Constr. Approx., 14 (1998), 531–567 | DOI | MR | Zbl

[2] Frenkel I. B., Turaev V. G., Elliptic solutions of the Yang–Baxter equation and modular hypergeometric functions, The Arnold–Gelfand Mathematical Seminars, Birkhäuser Boston, Boston, MA, 1997, 71–204 | MR | Zbl

[3] Gasper G., Rahman M., Basic hypergeometric series, 2nd ed., Encyclopedia of Mathematics and Its Applications, 96, Cambridge University Press, Cambridge, 2004 | MR | Zbl

[4] Gustafson R. A., “Multilateral summation theorems for ordinary and basic hypergeometric series in $U(n)$”, SIAM J. Math. Anal., 18 (1987), 1576–1596 | DOI | MR | Zbl

[5] Kajihara Y., “Euler transformation formula for multiple basic hypergeometric series of type $A$ and some applications”, Adv. Math., 187 (2004), 53–97 | DOI | MR | Zbl

[6] Kajihara Y., Noumi M., “Multiple elliptic hypergeometric series. An approach from the Cauchy determinant”, Indag. Math. (N.S.), 14 (2003), 395–421 ; math.CA/0306219 | DOI | MR | Zbl

[7] Kawanaka N., “On subfield symmetric spaces over a finite field”, Osaka J. Math., 28 (1991), 759–791 | MR | Zbl

[8] Kawanaka N., “A $q$-series identity involving Schur functions and related topics”, Osaka J. Math., 36 (1999), 157–176 | MR | Zbl

[9] Lascoux A., Symmetric functions and combinatorial operators on polynomials, CBMS Regional Conference Series in Mathematics, 99, American Mathematical Society, Providence, RI, 2003 | MR | Zbl

[10] Lassalle M., Schlosser M. J., “Inversion of the Pieri formula for Macdonald polynomials”, Adv. Math., 202 (2006), 289–325 ; math.CO/0402127 | DOI | MR | Zbl

[11] Macdonald I. G., Symmetric functions and Hall polynomials, 2nd ed., Oxford University Press, New York, 1995 | MR | Zbl

[12] Milne S. C., “Multiple $q$-series and $U(n)$ generalizations of Ramanujan's $_1\psi_1$ sum”, Ramanujan Revisited (Urbana-Champaign, Ill., 1987), Academic Press, Boston, MA, 1988, 473–524 | MR

[13] Rosengren H., “A proof of a multivariable elliptic summation formula conjectured by Warnaar”, $q$-Series with Applications to Combinatorics, Number Theory, and Physics (Urbana, IL, 2000), Contemp. Math., 291, Amer. Math. Soc., Providence, RI, 2001, 193–202 ; math.CA/0101073 | MR | Zbl

[14] Rosengren H., “Elliptic hypergeometric series on root systems”, Adv. Math., 181 (2004), 417–447 ; math.CA/0207046 | DOI | MR | Zbl

[15] Rosengren H., “Schur $Q$-polynomials, multiple hypergeometric series and enumeration of marked shifted tableaux”, J. Combin. Theory Ser. A, 115 (2008), 376–406 ; math.CO/0603086 | DOI | MR | Zbl

[16] Rosengren H., Schlosser M. J., “On Warnaar's elliptic matrix inversion and Karlsson–Minton-type elliptic hypergeometric series”, J. Comput. Appl. Math., 178 (2005), 377–391 ; math.CA/0309358 | DOI | MR | Zbl

[17] Ruijsenaars S. N. M., “Complete integrability of relativistic Calogero–Moser systems and elliptic function identities”, Comm. Math. Phys., 110 (1987), 191–213 | DOI | MR | Zbl

[18] Ruijsenaars S. N. M., “Elliptic integrable systems of Calogero–Moser type: some new results on joint eigenfunctions”, Proceedings of the 2004 Kyoto Workshop on Elliptic Integrable Systems, Rokko Lectures in Mathematics, 18, eds. M. Noumi and K. Takasaki, Kobe University, 2005, 223–240

[19] Ruijsenaars S. N. M., Schneider H., “A new class of integrable systems and its relation to solitons”, Ann. Physics, 170 (1986), 370–405 | DOI | MR | Zbl

[20] Schlosser M. J., “Multidimensional matrix inversions and $A_r$ and $D_r$ basic hypergeometric series”, Ramanujan J., 1 (1997), 243–274 | DOI | MR | Zbl

[21] Schlosser M. J., “Explicit computation of the $q,t$-Littlewood–Richardson coefficients”, Jack, Hall–Littlewood and Macdonald Polynomials, Contemp. Math., 417, Amer. Math. Soc., Providence, RI, 2006, 335–343 | MR | Zbl

[22] Warnaar S. O., “Summation and transformation formulas for elliptic hypergeometric series”, Constr. Approx., 18 (2002), 479–502 ; math.QA/0001006 | DOI | MR | Zbl

[23] Warnaar S. O., “Rogers–Szegő polynomials and Hall–Littlewood symmetric functions”, J. Algebra, 303 (2006), 810–830 ; arXiv:0708.3110 | DOI | MR | Zbl

[24] Whittaker E. T., Watson G. N., A course of modern analysis, 4th ed., Cambridge University Press, Cambridge, 1927 | MR