@article{SIGMA_2009_5_a53,
author = {Yasushi Komori and Masatoshi Noumi and Jun'ichi Shiraishi},
title = {Kernel {Functions} for {Difference} {Operators} of {Ruijsenaars} {Type} and {Their} {Applications}},
journal = {Symmetry, integrability and geometry: methods and applications},
year = {2009},
volume = {5},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SIGMA_2009_5_a53/}
}
TY - JOUR AU - Yasushi Komori AU - Masatoshi Noumi AU - Jun'ichi Shiraishi TI - Kernel Functions for Difference Operators of Ruijsenaars Type and Their Applications JO - Symmetry, integrability and geometry: methods and applications PY - 2009 VL - 5 UR - http://geodesic.mathdoc.fr/item/SIGMA_2009_5_a53/ LA - en ID - SIGMA_2009_5_a53 ER -
%0 Journal Article %A Yasushi Komori %A Masatoshi Noumi %A Jun'ichi Shiraishi %T Kernel Functions for Difference Operators of Ruijsenaars Type and Their Applications %J Symmetry, integrability and geometry: methods and applications %D 2009 %V 5 %U http://geodesic.mathdoc.fr/item/SIGMA_2009_5_a53/ %G en %F SIGMA_2009_5_a53
Yasushi Komori; Masatoshi Noumi; Jun'ichi Shiraishi. Kernel Functions for Difference Operators of Ruijsenaars Type and Their Applications. Symmetry, integrability and geometry: methods and applications, Tome 5 (2009). http://geodesic.mathdoc.fr/item/SIGMA_2009_5_a53/
[1] Aomoto K., Ito M., “A determinant formula for a holonomic $q$-difference system associated with Jackson integrals of type $BC_n$”, Adv. Math., 221:4 (2009), 1069–1114 | DOI | MR | Zbl
[2] van Diejen J. F., “Integrability of difference Calogero–Moser systems”, J. Math. Phys., 35 (1994), 2983–3004 | DOI | MR | Zbl
[3] van Diejen J. F., “Self-dual Koornwinder–Macdonald polynomials”, Invent. Math., 126 (1996), 319–339 ; q-alg/9507033 | DOI | MR | Zbl
[4] Gasper G., Rahman M., Basic hypergeometric series, 2nd ed., Encyclopedia of Mathematics and Its Applications, 96, Cambridge University Press, Cambridge, 2004 | MR | Zbl
[5] Kajihara Y., Noumi M., “Raising operators of row type for Macdonald polynomials”, Compositio Math., 120 (2000), 119–136 ; math.QA/9803151 | DOI | MR | Zbl
[6] Kajihara Y., Noumi M., “Multiple elliptic hypergeometric series. An approach from the Cauchy determinant”, Indag. Math. (N.S.), 14 (2003), 395–421 ; math.CA/0306219 | DOI | MR | Zbl
[7] Kirillov A. N., Noumi M., “Affine Hecke algebras and raising operators for Macdonald polynomials”, Duke Math. J., 93 (1998), 1–39 ; q-alg/9605004 | DOI | MR | Zbl
[8] Kirillov A. N., Noumi M., “$q$-difference raising operators for Macdonald polynomials and the integrality of transition coefficients”, Algebraic Methods and $q$-Special Functions (Montréal, QC, 1996), CRM Proc. Lecture Notes, 22, Amer. Math. Soc., Providence, RI, 1999, 227–243 ; q-alg/9605005 | MR | Zbl
[9] Komori Y., Hikami K., “Quantum integrability of the generalized elliptic Ruijsenaars models”, J. Phys. A: Math. Gen., 30 (1997), 4341–4364 | DOI | MR | Zbl
[10] Koornwinder T. H., “Askey–Wilson polynomials for root systems of type $BC$”, Hypergeometric Functions on Domains of Positivity, Jack Polynomials, and Applications (Tampa, FL, 1991), Contemp. Math., 138, Amer. Math. Soc., Providence, RI, 1992, 189–204 | MR | Zbl
[11] Lassalle M., “Some conjectures for Macdonald polynomials of type $B$, $C$, $D$”, Sém. Lothar. Combin., 52 (2004), Art. B52h, 24 pp., ages ; math.CO/0503149 | MR
[12] Langmann E., “An explicit solution of the (quantum) elliptic Calogero–Sutherland model”, SPT 2004—Symmetry and Perturbation Theory, World Sci. Publ., Hackensack, NJ, 2005, 159–174 ; math-ph/0407050 | MR | Zbl
[13] Langmann E., “Remarkable identities related to the (quantum) elliptic Calogero–Sutherland model”, J. Math. Phys., 47 (2006), 022101, 18 pp., ages ; math-ph/0406061 | DOI | MR | Zbl
[14] Macdonald I. G., Symmetric functions and Hall polynomials, 2nd ed., Oxford University Press, New York, 1995 | MR | Zbl
[15] Mimachi K., “A duality of Macdonald–Koornwinder polynomials and its applications to integral representations”, Duke Math. J., 107 (2001), 263–281 | DOI | MR
[16] Mimachi K., Noumi M., “An integral representation of eigenfunctions for Macdonald's $q$-difference operators”, Tôhoku Math. J., 49 (1997), 517–525 | DOI | MR | Zbl
[17] Mimachi K., Noumi M., “A reproducing kernel for nonsymmetric Macdonald polynomials”, Duke Math. J., 91 (1998), 621–634 ; q-alg/9610014 | DOI | MR | Zbl
[18] Okounkov A., “$BC$-type interpolation Macdonald polynomials and binomial formula for Koornwinder polynomials”, Transform. Groups, 3 (1998), 181–207 ; q-alg/9611011 | DOI | MR | Zbl
[19] Rains E. M., “$BC_n$-symmetric polynomials”, Transform. Groups, 10 (2005), 63–132 ; math.QA/0112035 | DOI | MR | Zbl
[20] Ruijsenaars S. N. M., “Complete integrability of relativistic Calogero–Moser systems and elliptic function identities”, Comm. Math. Phys., 110 (1987), 191–213 | DOI | MR | Zbl
[21] Ruijsenaars S. N. M., “Elliptic integrable systems of Calogero–Moser type: some new results on joint eigenfunctions”, Elliptic Integrable Systems, Proceedings of the Workshop on Elliptic Integrable Systems (Kyoto, 2004), Rokko Lectures in Mathematics, 18, Kobe University, 2005, 223–240
[22] Ruijsenaars S. N. M., “Eigenfunctions with a zero eigenvalue for differences of elliptic relativistic Calogero–Moser Hamiltonians”, Theoret. and Math. Phys., 146 (2006), 25–33 | DOI | MR | Zbl
[23] Ruijsenaars S. N. M., “Hilbert–Schmidt operators vs. integrable systems of elliptic Calogero–Moser type. I. The eigenfunction identities”, Comm. Math. Phys., 286 (2009), 629–657 | DOI | MR | Zbl
[24] Stokman J. V., “Lecture notes on Koornwinder polynomials”, Laredo Lectures on Orthogonal Polynomials and Special Functions, Adv. Theory Spec. Funct. Orthogonal Polynomials, Nova Sci. Publ., Hauppauge, NY, 2004, 145–207 | MR | Zbl