@article{SIGMA_2009_5_a52,
author = {A. D\'ector and H. A. Morales-T\'ecotl and L. F. Urrutia and J. D. Vergara},
title = {An {Alternative} {Canonical} {Approach} to the {Ghost} {Problem} in {a~Complexified} {Extension} of the {Pais{\textendash}Uhlenbeck} {Oscillator}},
journal = {Symmetry, integrability and geometry: methods and applications},
year = {2009},
volume = {5},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SIGMA_2009_5_a52/}
}
TY - JOUR AU - A. Déctor AU - H. A. Morales-Técotl AU - L. F. Urrutia AU - J. D. Vergara TI - An Alternative Canonical Approach to the Ghost Problem in a Complexified Extension of the Pais–Uhlenbeck Oscillator JO - Symmetry, integrability and geometry: methods and applications PY - 2009 VL - 5 UR - http://geodesic.mathdoc.fr/item/SIGMA_2009_5_a52/ LA - en ID - SIGMA_2009_5_a52 ER -
%0 Journal Article %A A. Déctor %A H. A. Morales-Técotl %A L. F. Urrutia %A J. D. Vergara %T An Alternative Canonical Approach to the Ghost Problem in a Complexified Extension of the Pais–Uhlenbeck Oscillator %J Symmetry, integrability and geometry: methods and applications %D 2009 %V 5 %U http://geodesic.mathdoc.fr/item/SIGMA_2009_5_a52/ %G en %F SIGMA_2009_5_a52
A. Déctor; H. A. Morales-Técotl; L. F. Urrutia; J. D. Vergara. An Alternative Canonical Approach to the Ghost Problem in a Complexified Extension of the Pais–Uhlenbeck Oscillator. Symmetry, integrability and geometry: methods and applications, Tome 5 (2009). http://geodesic.mathdoc.fr/item/SIGMA_2009_5_a52/
[1] Thirring W., “Regularization as a consequence of higher order equations”, Phys. Rev., 77 (1950), 570 | DOI | MR | Zbl
[2] Pais A., Uhlenbeck G. E., “On field theories with nonlocalized action”, Phys. Rev., 79 (1950), 145–165 | DOI | MR | Zbl
[3] Heisenberg W.,, “Lee model and quantisation of non linear field theories”, Nuclear Phys., 4 (1957), 532–563 | DOI | Zbl
[4] Stelle K. S., “Renormalization of higher-derivative quantum gravity”, Phys. Rev. D, 16 (1977), 953–969 | DOI | MR
[5] Tomboulis E. T., “Unitarity in higher derivative quantum gravity”, Phys. Rev. Lett., 52 (1984), 1173–1176 | DOI
[6] Hawking S. W., Hertog T., “Living with ghosts”, Phys. Rev. D, 65 (2002), 103515, 8 pp., ages ; hep-th/0107088 | DOI | MR
[7] Moeller N., Zwiebach B., “Dynamics with infinitely many time derivatives and rolling tachyons”, J. High Energy Phys., 2002:10 (2002), 034, 39 pp., ages ; hep-th/0207107 | DOI | MR
[8] Rivelles V. O., “Triviality of higher derivative theories”, Phys. Lett. B, 577 (2003), 137–142 ; hep-th/0304073 | DOI | MR | Zbl
[9] Antoniadis I., Dudas E., Ghilencea D. M., “Living with ghosts and their radiative corrections”, Nuclear Phys. B, 767 (2007), 29–53 ; hep-th/0608094 | DOI | MR | Zbl
[10] Codello A., Percacci R., “Fixed points of higher-derivative gravity”, Phys. Rev. Lett., 97 (2006), 221301, 4 pp., ages ; hep-th/0607128 | DOI | MR | Zbl
[11] Berkovits N., “New higher-derivative $R^4$ theorems”, Phys. Rev. Lett., 98 (2007), 211601, 4 pp., ages ; hep-th/0609006 | DOI | MR
[12] Jaen X., Llosa J., Molina A., “A reduction of order two for infinite order Lagrangians”, Phys. Rev. D, 34 (1986), 2302–2311 | DOI
[13] Eliezer D. A., Woodard R. P., “The problem of nonlocality in string theory”, Nuclear Phys. B, 325 (1989), 389–469 | DOI | MR
[14] Cheng T. C., Ho P. M., Yeh M. C., “Perturbative approach to higher derivative and nonlocal theories”, Nuclear Phys. B, 625 (2002), 151–165 ; hep-th/0111160 | DOI | MR | Zbl
[15] Simon J. Z., “Higher derivative Lagrangians, non-locality, problems and solutions”, Phys. Rev. D, 41 (1990), 3720–3733 | DOI | MR
[16] Bender C. M., Mannheim P. D., “No-ghost theorem for the fourth-order derivative Pais–Uhlenbeck oscillator model”, Phys. Rev. Lett., 100 (2008), 110402, 4 pp., ages ; arXiv:0706.0207 | DOI
[17] Bender C. M., Mannheim P. D., “Exactly solvable $\mathcal{PT}$-symmetric Hamiltonian having no Hermitian counterpart”, Phys. Rev. D, 78 (2008), 025022, 20 pp., ages ; arXiv:0804.4190 | DOI | MR
[18] Bender C. M., Mannheim P. D., “Giving up the ghost”, J. Phys. A: Math. Theor., 41 (2008), 304018, 7 pp., ages ; arXiv:0807.2607 | DOI | MR | Zbl
[19] Smilga A. V., “Benign vs. malicious ghosts in higher-derivative theories”, Nuclear Phys. B, 706 (2005), 598–614 ; hep-th/0407231 | DOI | MR | Zbl
[20] Smilga A. V., “Ghost-free higher-derivative theory”, Phys. Lett. B, 632 (2006), 433–438 ; hep-th/0503213 | DOI | MR
[21] Smilga A. V., “Comments on the dynamics of the Pais–Uhlenbeck oscillator”, SIGMA, 5 (2009), 017, 13 pp., ages ; arXiv:0808.0139 | MR | Zbl
[22] Smilga A. V., “Exceptional points in quantum and classical dynamics”, J. Phys. A: Math. Theor., 42 (2009), 095301, 9 pp., ages ; arXiv:0808.0575 | DOI | MR | Zbl
[23] Bender C. M., “Making sense of non-Hermitian Hamiltonians”, Rep. Progr. Phys., 70 (2007), 947–1018 ; hep-th/0703096 | DOI | MR
[24] Ashtekar A., Lectures on nonperturbative canonical gravity, Advanced Series in Astrophysics and Cosmology, 6, World Scientific, Singapore, 1991 | MR | Zbl
[25] Ashtekar A., Mathematical problems of nonperturbative quantum general relativity, gr-qc/9302024
[26] Thiemann T., “Reality conditions inducing transforms for quantum gauge field theory and quantum gravity”, Classical Quantum Gravity, 13 (1996), 1383–1403 ; gr-qc/9511057 | DOI | MR | Zbl
[27] Ashtekar A., “A generalized Wick transform for gravity”, Phys. Rev. D, 53 (1996), 2865–2869 ; gr-qc/9511083 | DOI | MR
[28] Montesinos M., Morales-Técotl H. A., Urrutia L. F., Vergara J. D., “Complex canonical gravity and reality constraints”, Gen. Relativity Gravitation, 31 (1999), 719–723 | DOI | MR | Zbl
[29] Rovelli C., Quantum gravity, Cambridge University Press, Cambridge, 2004 | MR | Zbl
[30] Thiemann T., Modern canonical quantum general relativity, Cambridge University Press, Cambridge, 2007 | MR | Zbl
[31] Ostrogradsky M., “Mémoires sur les équations différentielles relatives aux problèmes des isopérimètres”, Mem. Acad. St. Petersbourg, VI 4 (1850), 385–517
[32] Swanson M. S., “Transition elements for a non-Hermitian quadratic Hamiltonian”, J. Math. Phys., 45 (2004), 585–601 | DOI | MR | Zbl
[33] Jones H. F., “On pseudo-Hermitian Hamiltonians and their Hermitian counterparts”, J. Phys. A: Math. Gen., 38 (2005), 1741–1746 ; quant-ph/0411171 | DOI | MR | Zbl
[34] Ivanov E. A., Smilga A. V., “Cryptoreality of nonanticommutative Hamiltonians”, J. High Energy Phys., 2007:07 (2007), 036, 16 pp., ages ; hep-th/0703038 | DOI | MR
[35] Anderson A., “Canonical transformations in quantum mechanics”, Ann. Physics, 232 (1994), 292–331 ; hep-th/9305054 | DOI | MR | Zbl
[36] Anderson A., “Quantum canonical transformations: physical equivalence of quantum theories”, Phys. Lett. B, 305 (1993), 67–70 ; hep-th/9302062 | DOI | MR
[37] Schwinger J., Quantum mechanics, symbolism of atomic measurements, Springer-Verlag, Berlin, 2001 | MR | Zbl
[38] Henneaux M., Teitelboim C., Quantization of gauge systems, Princeton University Press, Princeton, 1992 | MR | Zbl
[39] Dirac P. A. M., Lectures on quantum mechanics, Belfast Graduate School of Science, New York, 1964 | MR
[40] Senjanovic P., “Path integral quantization of field theories with second class constraints”, Ann. Physics, 100 (1976), 227–261 ; Erratum Ann. Physics, 209 (1991), 248 | DOI | DOI
[41] Mannheim P. D., Davidson A., “Dirac quantization of the Pais–Uhlenbeck fourth order oscillator”, Phys. Rev. A, 71 (2005), 042110, 9 pp., ages ; hep-th/0408104 | DOI | MR
[42] Alexandrov S. Y., Vassilevich D. V., “Path integral for the Hilbert–Palatini and Ashtekar gravity”, Phys. Rev. D, 58 (1998), 124029, 13 pp., ages ; gr-qc/9806001 | DOI | MR
[43] Mannheim P. D., “Solution to the ghost problem in fourth order derivative theories”, Found. Phys., 37 (2007), 532–571 ; hep-th/0608154 | DOI | MR | Zbl