Heisenberg-Type Families in $U_q(\widehat{sl_2})$
Symmetry, integrability and geometry: methods and applications, Tome 5 (2009) Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Using the second Drinfeld formulation of the quantized universal enveloping algebra $U_q(\widehat{sl_2})$ we introduce a family of its Heisenberg-type elements which are endowed with a deformed commutator and satisfy properties similar to generators of a Heisenberg subalgebra. Explicit expressions for new family of generators are found.
Keywords: quantized universal enveloping algebras; Heisenberg-type families.
@article{SIGMA_2009_5_a5,
     author = {Alexander Zuevsky},
     title = {Heisenberg-Type {Families} in $U_q(\widehat{sl_2})$},
     journal = {Symmetry, integrability and geometry: methods and applications},
     year = {2009},
     volume = {5},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SIGMA_2009_5_a5/}
}
TY  - JOUR
AU  - Alexander Zuevsky
TI  - Heisenberg-Type Families in $U_q(\widehat{sl_2})$
JO  - Symmetry, integrability and geometry: methods and applications
PY  - 2009
VL  - 5
UR  - http://geodesic.mathdoc.fr/item/SIGMA_2009_5_a5/
LA  - en
ID  - SIGMA_2009_5_a5
ER  - 
%0 Journal Article
%A Alexander Zuevsky
%T Heisenberg-Type Families in $U_q(\widehat{sl_2})$
%J Symmetry, integrability and geometry: methods and applications
%D 2009
%V 5
%U http://geodesic.mathdoc.fr/item/SIGMA_2009_5_a5/
%G en
%F SIGMA_2009_5_a5
Alexander Zuevsky. Heisenberg-Type Families in $U_q(\widehat{sl_2})$. Symmetry, integrability and geometry: methods and applications, Tome 5 (2009). http://geodesic.mathdoc.fr/item/SIGMA_2009_5_a5/

[1] Drinfel'd V. G., “A new realization of Yangians and quantized affine algebras”, Soviet Math. Dokl., 36 (1988), 212–216 | MR

[2] Enriquez B., “Quantum principal commutative subalgebra in the nilpotent part of $U_q\mathrm{sl}_2$ and lattice KdV variables”, Comm. Math. Phys., 170 (1995), 197–206 ; hep-th/9402145 | DOI | MR | Zbl

[3] Frenkel I. B., Jing N. H., “Vertex representations of quantum affine algebras”, Proc. Nat. Acad. Sci. USA, 85 (1988), 9373–9377 | DOI | MR | Zbl

[4] Jimbo M., Miki K., Miwa T., Nakayashiki A., “Correlation functions of the $XXZ$ model for $\Delta-1$”, Phys. Lett. A, 168 (1992), 256–263 ; hep-th/9205055 | DOI | MR

[5] Kac V. G., Infinite-dimensional Lie algebras, 3rd ed., Cambridge University Press, Cambridge, 1990 | MR

[6] Saveliev M. V., Zuevsky A. B., “Quantum vertex operators for the sine-Gordon model”, Internat. J. Modern Phys. A, 15 (2000), 3877–3897 | MR | Zbl

[7] Zuevsky A., Heisenberg-type families of $U_q(\widehat{\mathcal G})$, in preparation