@article{SIGMA_2009_5_a5,
author = {Alexander Zuevsky},
title = {Heisenberg-Type {Families} in $U_q(\widehat{sl_2})$},
journal = {Symmetry, integrability and geometry: methods and applications},
year = {2009},
volume = {5},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SIGMA_2009_5_a5/}
}
Alexander Zuevsky. Heisenberg-Type Families in $U_q(\widehat{sl_2})$. Symmetry, integrability and geometry: methods and applications, Tome 5 (2009). http://geodesic.mathdoc.fr/item/SIGMA_2009_5_a5/
[1] Drinfel'd V. G., “A new realization of Yangians and quantized affine algebras”, Soviet Math. Dokl., 36 (1988), 212–216 | MR
[2] Enriquez B., “Quantum principal commutative subalgebra in the nilpotent part of $U_q\mathrm{sl}_2$ and lattice KdV variables”, Comm. Math. Phys., 170 (1995), 197–206 ; hep-th/9402145 | DOI | MR | Zbl
[3] Frenkel I. B., Jing N. H., “Vertex representations of quantum affine algebras”, Proc. Nat. Acad. Sci. USA, 85 (1988), 9373–9377 | DOI | MR | Zbl
[4] Jimbo M., Miki K., Miwa T., Nakayashiki A., “Correlation functions of the $XXZ$ model for $\Delta-1$”, Phys. Lett. A, 168 (1992), 256–263 ; hep-th/9205055 | DOI | MR
[5] Kac V. G., Infinite-dimensional Lie algebras, 3rd ed., Cambridge University Press, Cambridge, 1990 | MR
[6] Saveliev M. V., Zuevsky A. B., “Quantum vertex operators for the sine-Gordon model”, Internat. J. Modern Phys. A, 15 (2000), 3877–3897 | MR | Zbl
[7] Zuevsky A., Heisenberg-type families of $U_q(\widehat{\mathcal G})$, in preparation