Partial Sums of Two Quartic $q$-Series
Symmetry, integrability and geometry: methods and applications, Tome 5 (2009) Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The partial sums of two quartic basic hypergeometric series are investigated by means of the modified Abel lemma on summation by parts. Several summation and transformation formulae are consequently established.
Keywords: basic hypergeometric series ($q$-series); well-poised q-series; quadratic $q$-series; cubic $q$-series; quartic $q$-series; the modified Abel lemma on summation by parts.
@article{SIGMA_2009_5_a49,
     author = {Wenchang Chu and Chenying Wang},
     title = {Partial {Sums} of {Two} {Quartic} $q${-Series}},
     journal = {Symmetry, integrability and geometry: methods and applications},
     year = {2009},
     volume = {5},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SIGMA_2009_5_a49/}
}
TY  - JOUR
AU  - Wenchang Chu
AU  - Chenying Wang
TI  - Partial Sums of Two Quartic $q$-Series
JO  - Symmetry, integrability and geometry: methods and applications
PY  - 2009
VL  - 5
UR  - http://geodesic.mathdoc.fr/item/SIGMA_2009_5_a49/
LA  - en
ID  - SIGMA_2009_5_a49
ER  - 
%0 Journal Article
%A Wenchang Chu
%A Chenying Wang
%T Partial Sums of Two Quartic $q$-Series
%J Symmetry, integrability and geometry: methods and applications
%D 2009
%V 5
%U http://geodesic.mathdoc.fr/item/SIGMA_2009_5_a49/
%G en
%F SIGMA_2009_5_a49
Wenchang Chu; Chenying Wang. Partial Sums of Two Quartic $q$-Series. Symmetry, integrability and geometry: methods and applications, Tome 5 (2009). http://geodesic.mathdoc.fr/item/SIGMA_2009_5_a49/

[1] Andrews G. E., “Three aspects of partitions”, Séminaire Lotharingien de Combinatoire (Salzburg, 1990), Publ. Inst. Rech. Math. Av., 462, Univ. Louis Pasteur, Strasbourg, 1991, 5–18 | MR

[2] Andrews G. E., Askey R., Roy R., Special functions, Encyclopedia of Mathematics and Its Applications, 71, Cambridge University Press, Cambridge, 1999 | MR | Zbl

[3] Bailey W. N., “Well-poised basic hypergeometric series”, Quart. J. Math. Oxford Ser., 18 (1947), 157–166 | DOI | MR | Zbl

[4] Chu W., “Inversion techniques and combinatorial identities: Jackson's $q$-analogue of the Dougall–Dixon theorem and the dual formulae”, Compositio Math., 95 (1995), 43–68 | MR | Zbl

[5] Chu W., “Abel's lemma on summation by parts and basic hypergeometric series”, Adv. in Appl. Math., 39 (2007), 490–514 | DOI | MR | Zbl

[6] Chu W., Jia C., “Abel's method on summation by parts and theta hypergeometric series”, J. Combin. Theory Ser. A, 115 (2008), 815–844 | DOI | MR | Zbl

[7] Chu W., Wang C., “Abel's lemma on summation by parts and partial $q$-series transformations”, Sci. China Ser. A, 52 (2009), 720–748 | DOI | MR | Zbl

[8] Chu W., Wang X., “Abel's lemma on summation by parts and terminating $q$-series identities”, Numer. Algorithms, 49 (2008), 105–128 | DOI | MR | Zbl

[9] Frenkel I. B., Turaev V. G., “Elliptic solutions of the Yang–Baxter equation and modular hypergeometric functions”, The Arnold–Gelfand Mathematical Seminars, Birkhäuser Boston, Boston, MA, 1997, 171–204 | MR | Zbl

[10] Gasper G., “Summation, transformation, and expansion formulas for bibasic series”, Trans. Amer. Math. Soc., 312 (1989), 257–277 | DOI | MR | Zbl

[11] Gasper G., Rahman M., “An indefinite bibasic summation formula and some quadratic, cubic and quartic summation and transformation formulas”, Canad. J. Math., 42 (1990), 1–27 | MR | Zbl

[12] Gasper G., Rahman M., Basic hypergeometric series, 2nd ed., Encyclopedia of Mathematics and Its Applications, 96, Cambridge University Press, Cambridge, 2004 | MR | Zbl

[13] Gessel I., Stanton D., “Applications of $q$-Lagrange inversion to basic hypergeometric series”, Trans. Amer. Math. Soc., 277 (1983), 173–201 | DOI | MR | Zbl

[14] Ismail M. E. H., Stanton D., “Tribasic integrals and identities of Rogers–Ramanujan type”, Trans. Amer. Math. Soc., 355 (2003), 4061–4091 | DOI | MR | Zbl

[15] Koornwinder T. H., “Askey–Wilson polynomials as zonal spherical functions on the $\mathrm{SU}(2)$ quantum group”, SIAM J. Math. Anal., 24 (1993), 795–813 | DOI | MR | Zbl

[16] Rahman M., “Some quadratic and cubic summation formulas for basic hypergeometric series”, Canad. J. Math., 45 (1993), 394–411 | MR | Zbl

[17] Rahman M., Verma A., “Quadratic transformation formulas for basic hypergeometric series”, Trans. Amer. Math. Soc., 335 (1993), 277–302 | DOI | MR | Zbl

[18] Stanton D., “The Bailey–Rogers–Ramanujan group”, $q$-series with applications to combinatorics, number theory, and physics, Contemp. Math., 291, 2001, 55–70 | MR | Zbl

[19] Stromberg K. R., An introduction to classical real analysis, Wadsworth International Mathematics Series, Wadsworth International, Belmont, Calif., 1981 | MR | Zbl

[20] Warnaar S. O., “Summation and transformation formulas for elliptic hypergeometric series”, Constr. Approx., 18 (2002), 479–502 ; math.QA/0001006 | DOI | MR | Zbl