Hilbert–Schmidt Operators vs. Integrable Systems of Elliptic Calogero–Moser Type. III. The Heun Case
Symmetry, integrability and geometry: methods and applications, Tome 5 (2009) Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The Heun equation can be rewritten as an eigenvalue equation for an ordinary differential operator of the form $-d^2/dx^2+V(g;x)$, where the potential is an elliptic function depending on a coupling vector $g\in\mathbb R^4$. Alternatively, this operator arises from the $BC_1$ specialization of the $BC_N$ elliptic nonrelativistic Calogero–Moser system (a.k.a. the Inozemtsev system). Under suitable restrictions on the elliptic periods and on $g$, we associate to this operator a self-adjoint operator $H(g)$ on the Hilbert space $\mathcal H=L^2([0,\omega_1],\,dx)$, where $2\omega_1$ is the real period of $V(g;x)$. For this association and a further analysis of $H(g)$, a certain Hilbert–Schmidt operator $\mathcal I(g)$ on $\mathcal H$ plays a critical role. In particular, using the intimate relation of $H(g)$ and $\mathcal I(g)$, we obtain a remarkable spectral invariance: In terms of a coupling vector $c\in\mathbb R^4$ that depends linearly on $g$, the spectrum of $H(g(c))$ is invariant under arbitrary permutations $\sigma(c)$, $\sigma\in S_4$.
Keywords: Heun equation; Hilbert–Schmidt operators; spectral invariance.
@article{SIGMA_2009_5_a48,
     author = {Simon N. M. Ruijsenaars},
     title = {Hilbert{\textendash}Schmidt {Operators} vs. {Integrable} {Systems} of {Elliptic} {Calogero{\textendash}Moser} {Type.} {III.~The} {Heun} {Case}},
     journal = {Symmetry, integrability and geometry: methods and applications},
     year = {2009},
     volume = {5},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SIGMA_2009_5_a48/}
}
TY  - JOUR
AU  - Simon N. M. Ruijsenaars
TI  - Hilbert–Schmidt Operators vs. Integrable Systems of Elliptic Calogero–Moser Type. III. The Heun Case
JO  - Symmetry, integrability and geometry: methods and applications
PY  - 2009
VL  - 5
UR  - http://geodesic.mathdoc.fr/item/SIGMA_2009_5_a48/
LA  - en
ID  - SIGMA_2009_5_a48
ER  - 
%0 Journal Article
%A Simon N. M. Ruijsenaars
%T Hilbert–Schmidt Operators vs. Integrable Systems of Elliptic Calogero–Moser Type. III. The Heun Case
%J Symmetry, integrability and geometry: methods and applications
%D 2009
%V 5
%U http://geodesic.mathdoc.fr/item/SIGMA_2009_5_a48/
%G en
%F SIGMA_2009_5_a48
Simon N. M. Ruijsenaars. Hilbert–Schmidt Operators vs. Integrable Systems of Elliptic Calogero–Moser Type. III. The Heun Case. Symmetry, integrability and geometry: methods and applications, Tome 5 (2009). http://geodesic.mathdoc.fr/item/SIGMA_2009_5_a48/

[1] Ruijsenaars S. N. M., “Hilbert–Schmidt operators vs. integrable systems of elliptic Calogero–Moser type. I. The eigenfunction identities”, Comm. Math. Phys., 286 (2009), 629–657 | DOI | MR | Zbl

[2] Ruijsenaars S. N. M., “Hilbert–Schmidt operators vs. integrable systems of elliptic Calogero–Moser type. II. The $A_{N-1}$ case: First steps”, Comm. Math. Phys., 286 (2009), 659–680 | DOI | MR | Zbl

[3] Ruijsenaars S. N. M., “Elliptic integrable systems of Calogero–Moser type: Some new results on joint eigenfunctions”, Proceedings of the 2004 Kyoto Workshop on Elliptic integrable systems, Rokko Lectures in Math., eds. M. Noumi and K. Takasaki, Dept. of Math., Kobe Univ., 2004, 223–240

[4] Whittaker E. T., Watson G. N., A course of modern analysis, Cambridge University Press, Cambridge, 1973 | MR | Zbl

[5] Inozemtsev V. I., “Lax representation with spectral parameter on a torus for integrable particle systems”, Lett. Math. Phys., 17 (1989), 11–17 | DOI | MR | Zbl

[6] Ronveaux A. (ed.), Heun's differential equations, Oxford University Press, Oxford, 1995 | MR | Zbl

[7] Sleeman B. D., Kuznetsov V. B., Heun functions, Chapter HE in Handbook of mathematical functions, to appear | MR

[8] Maier R., “The 192 solutions of the Heun equation”, Math. Comp., 76 (2007), 811–843 ; math.CA/0408317 | DOI | MR | Zbl

[9] Takemura K., “Middle convolution and Heun's equation”, SIGMA, 5 (2009), 040, 22 pp., ages ; arXiv:0810.3112 | MR | Zbl

[10] Reed M., Simon B., Methods of modern mathematical physics. II. Fourier analysis, self-adjointness, Academic Press, New York, 1975 | MR | Zbl

[11] Slavyanov S. Y., Lay W., Special functions. A unified theory based on singularities, Oxford University Press, Oxford, 2000 | MR | Zbl

[12] Kazakov A. Y., Slavyanov S. Y., “Integral relations for Heun-class special functions”, Theoret. and Math. Phys., 107 (1996), 733–739 | DOI | MR | Zbl

[13] Takemura K., “Integral representation of solutions to Fuchsian system and Heun's equation”, J. Math. Anal. Appl., 342 (2008), 52–69 ; arXiv:0705.3358 | MR | Zbl

[14] Ruijsenaars S. N. M., “First order analytic difference equations and integrable quantum systems”, J. Math. Phys., 38 (1997), 1069–1146 | DOI | MR | Zbl

[15] Reed M., Simon B., Methods of modern mathematical physics. I. Functional analysis, Academic Press, New York, 1972 | MR

[16] Ruijsenaars S. N. M., Hilbert–Schmidt operators vs. integrable systems of elliptic Calogero–Moser type. IV. The relativistic Heun (van Diejen) case, in preparation

[17] Takemura K., “The Heun equation and the Calogero–Moser–Sutherland system. II. Perturbation and algebraic solution”, Electron. J. Differential Equations, 2004 (2004), no. 15, 30 pp., ages ; math.CA/0112179 | MR | Zbl

[18] Ruijsenaars S. N. M., “Integrable $BC_N$ analytic difference operators: Hidden parameter symmetries and eigenfunctions”, Proceedings Cadiz 2002 NATO Advanced Research Workshop “New trends in integrability and partial solvability”, NATO Science Series, 132, eds. A. B. Shabat, A. González-López, M. Mañas, L. Martínez Alonso and M. A. Rodrígue, Kluwer, Dordrecht, 2004, 217–261 | MR | Zbl

[19] Arscott F. M., Periodic differential equations, Pergamon Press, London, 1964 | Zbl

[20] Koekoek R., Swarttouw R. W., The Askey-scheme of hypergeometric orthogonal polynomials and its $q$-analogue, Report no. 98-17, Delft University of Technology, Faculty of Information Technology and Systems, Department of Technical Mathematics and Informatics, 1998