@article{SIGMA_2009_5_a47,
author = {Jochen Kuttler and Venkatramani Lakshmibai},
title = {Singularities of {Affine} {Schubert} {Varieties}},
journal = {Symmetry, integrability and geometry: methods and applications},
year = {2009},
volume = {5},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SIGMA_2009_5_a47/}
}
Jochen Kuttler; Venkatramani Lakshmibai. Singularities of Affine Schubert Varieties. Symmetry, integrability and geometry: methods and applications, Tome 5 (2009). http://geodesic.mathdoc.fr/item/SIGMA_2009_5_a47/
[1] Billey S., Braden T., “Lower bounds for Kazhdan-Lusztig polynomials from patterns”, Transform. Groups, 8 (2003), 321–332 ; math.RT/0202252 | DOI | MR | Zbl
[2] Billey S., Mitchell S., Smooth and palindromic Schubert varieties in affine Grassmannians, arXiv:0712.2871
[3] Billey S., Postnikov A., “Smoothness of Schubert varieties via patterns in root subsystems”, Adv. in Appl. Math., 34 (2005), 447–466 ; math.CO/0205179 | DOI | MR | Zbl
[4] Billey S., Warrington G., “Maximal singular loci of Schubert varieties in $\mathrm{SL}(n)/B$”, Trans. Amer. Math. Soc., 355 (2003), 3915–3945 ; math.AG/0102168 | DOI | MR | Zbl
[5] Carrell J., “The Bruhat graph of a Coxeter group, a conjecture of Deodhar, and rational smoothness of Schubert varieties”, Algebraic Groups and Their Generalizations: Classical Methods, Part 1 (University Park, PA, 1991), Proc. Sympos. Pure Math., 56, Amer. Math. Soc., Providence, RI, 1994, 53–61 | MR | Zbl
[6] Carrell J., Kuttler J., “Smooth points of $T$-stable varieties in $G/B$ and the Peterson map”, Invent. Math., 151 (2003), 353–379 ; math.AG/0005025 | DOI | MR | Zbl
[7] Cortez A., “Singularités génériques et quasi-résolutions des variétés de Schubert pour le groupe linéaire”, Adv. Math., 178 (2003), 396–445 ; math.AG/0106130 | DOI | MR | Zbl
[8] Evens S., Mircović I., “Characteristic cycles for the loop Grassmannian and nilpotent orbis”, Duke Math. J., 97 (1999), 109–126 | DOI | MR | Zbl
[9] Gasharov V., “Sufficiency of Lakshmibai–Sandhya singularity conditions for Schubert varieties”, Compositio Math., 126 (2001), 47–56 | DOI | MR | Zbl
[10] Juteau D.,, Modular representations of reductive groups and geometry of affine Grassmannians, arXiv:0804.2041
[11] Kassel C., Lascoux A., Reutenauer C., “The singular locus of a Schubert variety”, J. Algebra, 269 (2003), 74–108 | DOI | MR | Zbl
[12] Kumar S., “The nil Hecke ring and singularity of Schubert varieties”, Invent. Math., 123 (1996), 471–506 ; alg-geom/9503015 | MR | Zbl
[13] Kumar S., Kac–Moody groups, their flag varieties and representation theory, Progress in Mathematics, 204, Birkhäuser Boston, Boston, MA, 2002 | MR | Zbl
[14] Kraft H., Procesi C., “Minimal singularities in $\mathrm{GL}_n$”, Invent. Math., 62 (1981), 503–515 | DOI | MR | Zbl
[15] Lakshmibai V., Sandhya B., “Criterion for smoothness of Schubert varieties in $\mathrm{SL}(n)/B$”, Proc. Indian Acad. Sci. Math. Sci., 100 (1990), 45–52 | DOI | MR | Zbl
[16] Lakshmibai V., Seshadri C. S., “Singular locus of a Schubert variety”, Bull. Amer. Math. Soc. (N.S.), 11 (1984), 363–366 | DOI | MR | Zbl
[17] Lakshmibai V., Weyman J., “Multiplicities of points on a Schubert variety in a minuscule $G/P$”, C. R. Acad. Sci. Paris Sér. I Math., 307 (1988), 993–996 | MR | Zbl
[18] Lusztig G., “Green polynomials and singularities of unipotent classes”, Adv. in Math., 42 (1981), 169–178 | DOI | MR | Zbl
[19] Lusztig G., “Canonical bases arising from quantized universal enveloping algebras”, J. Amer. Math. Soc., 3 (1990), 447–498 | DOI | MR | Zbl
[20] Magyar P. M., Affine Schubert varieties and circular complexes, math.AG/0210151
[21] Malkin A., Ostrik V., Vybornov M., “Minimal degeneration singularities in the affine Grassmannians”, Duke Math. J., 126 (2005), 233–249 ; math.AG/0305095 | DOI | MR | Zbl
[22] Manivel L., “Le lieu singulier des variétés de Schubert”, Internat. Math. Res. Notices, 2001:16 (2001), 849–871 ; math.AG/0102124 | DOI | MR | Zbl