@article{SIGMA_2009_5_a46,
author = {Michael C. Ogilvie and Peter N. Meisinger},
title = {$\mathcal{PT}$ {Symmetry} and {QCD:} {Finite} {Temperature} and {Density}},
journal = {Symmetry, integrability and geometry: methods and applications},
year = {2009},
volume = {5},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SIGMA_2009_5_a46/}
}
TY - JOUR
AU - Michael C. Ogilvie
AU - Peter N. Meisinger
TI - $\mathcal{PT}$ Symmetry and QCD: Finite Temperature and Density
JO - Symmetry, integrability and geometry: methods and applications
PY - 2009
VL - 5
UR - http://geodesic.mathdoc.fr/item/SIGMA_2009_5_a46/
LA - en
ID - SIGMA_2009_5_a46
ER -
Michael C. Ogilvie; Peter N. Meisinger. $\mathcal{PT}$ Symmetry and QCD: Finite Temperature and Density. Symmetry, integrability and geometry: methods and applications, Tome 5 (2009). http://geodesic.mathdoc.fr/item/SIGMA_2009_5_a46/
[1] Bender C. M., Boettcher S., “Real spectra in non-Hermitian Hamiltonians having $\mathcal{PT}$ symmetry”, Phys. Rev. Lett., 80 (1998), 5243–5246 ; physics/9712001 | DOI | MR | Zbl
[2] Bender C. M., “Introduction to $\mathcal{PT}$-symmetric quantum theory”, Contemp. Phys., 46, 2005, 277–292 ; quant-ph/0501052 | MR
[3] Bender C. M., “Making sense of non-Hermitian Hamiltonians”, Rep. Progr. Phys., 70 (2007), 947–1018 ; hep-th/0703096 | DOI | MR
[4] Stephanov M. A., “QCD phase diagram: an overview”, PoSLAT, 2006 (2006), 024, 15 pp., ages; hep-lat/0701002
[5] Lombardo M. P., “QCD at non-zero density: lattice results”, J. Phys. G: Nucl. Part. Phys., 35 (2008), 104019, 8 pp., ages ; arXiv:0808.3101 | DOI
[6] Alford M. G., Schmitt A., Rajagopal K., Schafer T., “Color superconductivity in dense quark matter”, Rev. Modern Phys., 80 (2008), 1455–1515 ; arXiv:0709.4635 | DOI
[7] Greensite J., “The confinement problem in lattice gauge theory”, Progr. Part. Nucl. Phys., 51 (2003), 1–83 ; hep-lat/0301023 | DOI
[8] Gross D. J., Pisarski R. D., Yaffe L. G., “QCD and instantons at finite temperature”, Rev. Modern Phys., 53 (1981), 43–80 | DOI | MR
[9] Weiss N., “The effective potential for the order parameter of gauge theories at finite temperature”, Phys. Rev. D, 24 (1981), 475–480 | DOI
[10] Bender C. M., Jones H. F., Rivers R. J., “Dual $\mathcal{PT}$-symmetric quantum field theories”, Phys. Lett. B, 625 (2005), 333–340 ; hep-th/0508105 | DOI | MR
[11] Hands S., Kogut J. B., Lombardo M. P., Morrison S. E., “Symmetries and spectrum of $\mathrm{SU}(2)$ lattice gauge theory at finite chemical potential”, Nuclear Phys. B, 558 (1999), 327–346 ; hep-lat/9902034 | DOI
[12] Kogut J. B., Sinclair D. K., Hands S. J., Morrison S. E., “Two-colour QCD at non-zero quark-number density”, Phys. Rev. D, 64 (2001), 094505, 9 pp., ages ; hep-lat/0105026 | DOI
[13] Edwards S. F., Lenard A., “Exact statistical mechanics of a one-dimensional system with Coulomb forces. II. The method of functional integration”, J. Math. Phys., 3 (1962), 778–792 | DOI | MR | Zbl
[14] Davies N. M., Hollowood T. J., Khoze V. V., Mattis M. P., “Gluino condensate and magnetic monopoles in supersymmetric gluodynamics”, Nuclear Phys. B, 559 (1999), 123–142 ; hep-th/9905015 | DOI | MR | Zbl
[15] Davies N. M., Hollowood T. J., Khoze V. V., “Monopoles, affine algebras and the gluino condensate”, J. Math. Phys., 44 (2003), 3640–3656 ; hep-th/0006011 | DOI | MR | Zbl
[16] Myers J. C., Ogilvie M. C., “New phases of $\mathrm{SU}(3)$ and $\mathrm{SU}(4)$ at finite temperature”, Phys. Rev. D, 77 (2008), 125030, 10 pp., ages ; arXiv:0707.1869 | DOI
[17] Unsal M., “Abelian duality, confinement, and chiral symmetry breaking in QCD(adj)”, Phys. Rev. Lett., 100 (2008), 032005, 4 pp., ages ; arXiv:0708.1772 | DOI
[18] Unsal M., Yaffe L. G., “Center-stabilized Yang–Mills theory: confinement and large $N$ volume independence”, Phys. Rev. D, 78 (2008), 065035, 17 pp., ages ; arXiv:0803.0344 | DOI | MR
[19] Meisinger P. N., Ogilvie M. C., “Complete high temperature expansions for one-loop finite temperature effects”, Phys. Rev. D, 65 (2002), 056013, 7 pp., ages ; hep-ph/0108026 | DOI
[20] Myers J. C., Ogilvie M. C., Exotic phases of finite temperature $\mathrm{SU}(N)$ gauge theories with massive fermions: F, Adj, A/S, arXiv:0809.3964
[21] Meisinger P. N., Miller T. R., Ogilvie M. C., “Phenomenological equations of state for the quark-gluon plasma”, Phys. Rev. D, 65 (2002), 034009, 10 pp., ages ; hep-ph/0108009 | DOI
[22] Hollowood T. J., “Solitons in affine Toda field theories”, Nuclear Phys. B, 384 (1992), 523–540 | DOI | MR
[23] Meisinger P. N., Ogilvie M. C., “Polyakov loops, $Z(N)$ symmetry, and sine-law scaling”, Nuclear Phys. Proc. Suppl., 140 (2005), 650–652 ; hep-lat/0409136 | DOI
[24] Polyakov A. M., “Quark confinement and topology of gauge groups”, Nuclear Phys. B, 120 (1977), 429–458 | DOI | MR
[25] Weinberg E. J., “Fundamental monopoles and multi-monopole solutions for arbitrary simple gauge groups”, Nuclear Phys. B, 167 (1980), 500–524 | DOI
[26] Lee K. M., “Instantons and magnetic monopoles on $R^3\times S^1$ with arbitrary simple gauge groups”, Phys. Lett. B, 426 (1998), 323–328 ; hep-th/9802012 | DOI | MR | Zbl
[27] Kraan T. C., van Baal P., “Exact $T$-duality between calorons and Taub-NUT spaces”, Phys. Lett. B, 428 (1998), 268–276 ; hep-th/9802049 | DOI | MR
[28] Lee K. M., Lu C. H., “$\mathrm{SU}(2)$ calorons and magnetic monopoles”, Phys. Rev. D, 58 (1998), 025011, 7 pp., ages ; hep-th/9802108 | DOI
[29] Kraan T. C., van Baal P., “Periodic instantons with non-trivial holonomy”, Nuclear Phys. B, 533 (1998), 627–659 ; hep-th/9805168 | DOI | MR | Zbl
[30] Kraan T. C., van Baal P., “Monopole constituents inside $\mathrm{SU}(n)$ calorons”, Phys. Lett. B, 435 (1998), 389–395 ; hep-th/9806034 | DOI | MR
[31] Zarembo K., “Monopole determinant in Yang–Mills theory at finite temperature”, Nuclear Phys. B, 463 (1996), 73–98 ; arXiv:hep-th/9510031 | DOI | MR
[32] Giovannangeli P., Korthals Altes C. P., “'t Hooft and Wilson loop ratios in the QCD plasma”, Nuclear Phys. B, 608 (2001), 203–234 ; hep-ph/0102022 | DOI | Zbl
[33] Lucini B., Teper M., Wenger U., “Glueballs and $k$-strings in $\mathrm{SU}(N)$ gauge theories: calculations with improved operators”, J. High Energy Phys., 2004:04 (2004), 012, 44 pp., ages ; hep-lat/0404008 | DOI | MR
[34] Diakonov D., Petrov V., “Confining ensemble of dyons”, Phys. Rev. D, 76 (2007), 056001, 22 pp., ages ; arXiv:0704.3181 | DOI